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Quantum Matter

We would like to understand phase diagrams of complex systems, but whose 
Hamiltonians are often reasonably well known. 

Quantum phase transitions occur. What is their universality class & field 
theoretical description ? 

New tools welcome to diagnose/characterize QFTs at phase transitions

Basic building block: 

CuO2 planes 

Oxygen 

px/py orbitals 

Copper 

d      orbital 
x2-y2 

one band Hubbard model  

or t-J model 

keeps only Cu orbital 

derivation of 

effective Hamiltonian 

band structure ⇒ metallic state 
experiments    ⇒ antiferromagnetic Mott-insulator 

strong coulomb repulsion! 



Example of Microscopic Condensed Matter Models

From microscopic models: 

To quantum phase transitions: Wilson Fisher CFTs, QED3, Gross Neveu, …

Chiral Spin Liquid and Quantum Criticality in Extended S = 1/2 Heisenberg Models on the

Triangular Lattice.

Alexander Wietek⇤ and Andreas M. Läuchli
Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

(Dated: April 28, 2016)

We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional scalar chirality term
and show that a chiral spin liquid is stabilized in a sizeable region of the phase diagram. This topological
phase is situated in between a coplanar 120� Néel ordered and a non-coplanar tetrahedrally ordered phase.
Furthermore we discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare
the groundstates from Exact Diagonalization with a Dirac spin liquid wavefunction and propose a scenario
where this wavefunction describes the quantum critical point between the 120� magnetically ordered phase and
a putative Z2 spin liquid.

Introduction — The emergence of quantum spin liquids
in frustrated quantum magnetism is an exciting phenomenon
in contemporary condensed matter physics [1]. These novel
states of matter exhibit fascinating properties such as long-
range groundstate entanglement [2, 3] or anyonic braiding
statistics of quasiparticle excitations, relevant for a poten-
tial implementation of topological quantum computation [4].
Only very recently such phases have been found to be stabi-
lized in realistic local spin models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model
with only nearest neighbour interaction is known to stabi-
lize a regular 120� Néel order [20–23] adding further in-
teraction terms may increase frustration and induce mag-
netic disorder to the system. Experimentally, several ma-
terials with triangular lattice geometry do not exhibit any
sign of magnetic ordering down to lowest temperatures
[24–27]. These include for example the organic Mott in-
sulators like � (BEDT� TTF)2Cu2(CN)3 [24, 25] or
EtMe3Sb[Pd(dmit)2]2 [26, 27] and are thus candidates re-
alizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state closely related to the celebrated Laughlin wavefunction
of the fractional quantum Hall effect has recently been shown
to be the ground state of several extended Heisenberg models
on the kagomé lattice [5–7, 9]. The question arises whether a
CSL can indeed be realized on the triangular lattice as orig-
inally proposed. In a recent study [10] this was shown for
SU(N ) models for N � 3. In this letter we provide conclu-
sive evidence that indeed the CSL is stabilized in a spin-1/2
Heisenberg model upon adding a further scalar chirality term
J�

~Si · (~Sj ⇥ ~Sk) similar as in Refs. [6–8, 10]. Such a term
can be realized as a lowest order effective Heisenberg Hamil-
tonian of the Hubbard model upon adding � flux through the
elementary plaquettes [6, 29], either via a magnetic field or
by introducing artificial gauge fields in possible cold atoms
experiments [30, 31]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ⇠ t

2
/U and

J� ⇠ �t3/U2 where J1 (resp. J�) is the nearest neighbour
Heisenberg (resp. scalar chirality) coupling.

Another open question in frustrated magnetism of the trian-

gular lattice is the nature of the intermediate phase in the phase
diagram of the S = 1/2 Heisenberg model with added next-
nearest neighbour couplings around J2/J1 ⇡ 1/8. Several
authors [20, 32, 33] found a spin disordered state. Recently
several numerical studies [34–38] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this
Letter we advocate the presence of a O(4)⇤ quantum critical
point [39–41] separating the 120� Néel order from a putative
Z2 spin liquid. The diverging correlation length at this quan-
tum critical point and the neighbouring first order phase tran-
sition into the stripy collinear magnetic ordered phase render
the unambiguous identification of the intermediate spin liquid
phase challenging however.

Model — We investigate the Heisenberg model with near-
est and next-nearest neighbour interactions with an additional
uniform scalar chirality term on the triangular lattice

H = J1

X

hi,ji

~Si · ~Sj + J2

X

hhi,jii

~Si · ~Sj+

J�

X

i,j,k24

~Si · (~Sj ⇥ ~Sk)
(1)

where we set J1 ⌘ 1 and consider J2, J� � 0. Amongst a
120� Néel order, a stripy and a tetrahedral magnetic order we

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-J� model
on the triangular lattice, c.f. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36 sites triangular
simulation cluster, see main text for details.
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level crossings correspond to two low-energy states having
opposite parities with respect to inversion symmetry. How-
ever, these crossings disappear when one considers the next
largest cluster N = 32 with OBC, so that it probably corre-
sponds to a short-range feature only. We generally think that
using PBC is more appropriate to minimize finite-size effects,
so this will be the case here.

Last, we would like to recall some features of the semi-
metallic (SM) phase that exists in the absence of interactions.
Since there is a vanishing density of states at the Fermi level,
one needs a finite strength of a short-ranged interaction to trig-
ger an instability16,17, so that SM phase must have a finite ex-

tension in the phase diagram.
Regarding possible gap opening mechanism of the SM

phase, Refs 18 and 19 have listed all explicit (i.e. external)
weak-coupling perturbations which can open a gap. In the
spinless case considered here, the three particle-hole related
gaps are: i) the Néel-like charge density wave, which breaks
the A-B sublattice symmetry, ii) the Kekulé distortion pattern,
which breaks translation symmetry by adopting a tripling of
the unit-cell of modulated bond-strengths (this order parame-
ter has a real and an imaginary part, thus corresponds to two
masses), and iii) the integer quantum Hall mass20, induced
by breaking the time-reversal invariance and parity symmetry
upon adding complex Peierls phases on next-nearest neighbor
hoppings, without enlarging the size of the unit-cell. In ad-
dition to the particle-hole gaps, there is also the possibility to
open gaps by the addition of superconducting order parame-
ters18,21,22, we will however not address these instabilities in
this work.

The model Hamiltonian (1) considered here features all the
usual symmetries. If the semi-metallic phase is gapped out
by interactions, then the gap opening has to happen through
the interactions by spontaneously breaking some of the sym-
metries. The case i) quoted before is a well known instabil-
ity, since the Néel CDW state is an obvious strong-coupling
ground state at large V1/t. The other instabilities ii) and iii)
currently lack a strong coupling picture, and need to be con-
firmed by numerical simulations. We note however that all
three particle-hole instabilities have been reported in mean-
field studies.4–6

C. Overview of the phase diagram

We start by drawing the global phase diagram that summa-
rizes our main findings, see Fig. 3. Its main features are the
existence of several types of charge or bond ordering for inter-
mediate to large V1 and/or V2 interactions: Néel CDW, charge
modulation (CM), zigzag (ZZ) phase, Néel domain wall crys-
tal (NDWC), and plaquette/Kekulé phase (P-K) that we will
clarify later. The large orange region (ST*) in the upper right
part of the phase diagram features a degeneracy at the semi-
classical level, and it is presently unclear whether and how an
order-by-disorder mechanism will lift the degeneracy. While
some of these phases (CM, P-K, CDW) had been predicted us-
ing mean-field studies6 and confirmed numerically in some re-
gions10,11, the others (including NDWC and ST* phase for re-

pulsive interactions and the ZZ phase for attractive V1) had not
been advocated before. Note already that the plaquette/Kekulé
(P-K) phase only exists in some bounded region for interme-
diate (V1, V2) values, and does not extend to strong coupling.

There is also a large region of phase separation, mostly for
strong attractive interactions, in agreement with the results of
Ref. 23 for V2 = 0. Possibly superconductivity is present in
parts of the attractive region of the phase diagram, but we did
not focus on this instability here.

Last but not least, we do not have any convincing evidence
for the stability of the QAH phase, as found in similar recent
numerical studies10,11 but in contradiction with another nu-
merical study using open boundary conditions and entangled-
plaquette ansatz.12
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FIG. 3. (Color online) Phase diagram in the (V1/t, V2/t) parameter
space obtained from several exact diagonalization techniques (see
text). Dashed lines represent the classical transition lines, see Fig. 4.
The semi-metal, which is the ground-state for non-interacting spin-
less fermions, has a finite extension in the phase diagram because of
its vanishing density of states at the Fermi level. We will argue in the
remainder of this article that several other phases can be stabilised for
intermediate and/or large interactions: Néel CDW, plaquette/Kekulé
(P-K), Néel domain wall crystal (NDWC), zigzag (ZZ) phase, and
charge modulation (CM). The region (ST*) is degenerate at the semi-
classical level, and it is presently unclear whether and how an order-
by-disorder mechanism will lift the degeneracy. Note also the large
region of phase separation mostly in the attractive quadrant. Filled
symbols correspond to numerical evidence (using level spectroscopy
or measurements of correlations, see Sec. IV) obtained mostly on a
N = 24 cluster which contains the most important points in its Bril-
louin zone and features the full lattice point group symmetry of the
honeycomb lattice. Star symbols denote likely first order transitions,
witnessed by level crossings on the same cluster. Our numerical re-
sults do not support any region of topological QAH phase.

We will now turn to the presentation of various numerical
data and considerations that we have used to come up with
this global phase diagram.

Phys. Rev. B 92, 085146 (2015)Phys. Rev. B. 95, 035141 (2017)
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FIG. 1. (Color online) (a) Illustration of the honeycomb lattice with
V1, V2 interactions and the hopping t. (b) First (solid line) and second
(dashed line) Brillouin zone of the honeycomb lattice including the
location of a few special points in the Brillouin zone.

V2 interaction, we will consider the following Hamiltonian :

H = �t
X

hiji

(c†
i cj + h.c.) (1)

+ V1

X

hiji

(ni � 1/2)(nj � 1/2)

+ V2

X

hhijii

(ni � 1/2)(nj � 1/2)

depicted in Fig. 1(a), where ci and c†
i are the spinless

fermionic operators, t = 1 is the nearest-neighbor hopping
amplitude, V1 and V2 are the density-density repulsion or at-
traction strengths respectively on nearest- and next-nearest
neighbors. Note that we will focus on the half-filled case
where thanks to particle-hole symmetry, the chemical poten-
tial is known to be zero exactly.

Despite the particle-hole symmetry, it seems that quantum
Monte-Carlo (QMC) approaches exhibit a sign problem that
prohibits them. In fact, only in the simpler case V2 = 0 which
exhibits a direct phase transition from semi-metallic (SM)
phase to charge density wave (CDW) as a function of V1/t,
a very interesting recent proposal was made allowing to refor-
mulate the problem without sign-problem13, thus amenable to
accurate, unbiased QMC simulations14. Quite remarkably, the
case V1 � 0 and V2  0 can also be studied with QMC with-
out a minus-sign problem using a Majorana representation15.
In the absence of a QMC algorithm for the frustrated case, we
use Exact Diagonalization (ED) to get unbiased numerical re-
sults. Of course, one is limited in the sizes available but, since
we are investigating in particular the topological QAH phase
which is a translationally invariant (q = 0) instability (see
below), we can in principle use any finite-size lattice, even
though some of them do not have the full space-group sym-
metry. On the other hand, when looking at competing charge
instabilities, it is crucial to consider only clusters compatible
with such orderings and we will devote some discussion on
this topic in the next subsection.

B. Finite lattices

Since we plan to provide a systematic study on several clus-
ters, we have implemented lattices sizes ranging from 12 to 42
sites, with various shapes and spatial symmetries. In particu-
lar, these clusters may or may not have some reflection or ro-
tation symmetries (they all have inversion symmetry). More-
over, some of these lattices possess the ±K points (see the
Brillouin zone depicted in Fig. 1(b)) where the tight-binding
dispersion exhibits two Dirac cones, leading to a 6-fold de-
generacy of the half-filled free fermion ground-state (GS) so
that correlations require some care for these clusters. We refer
to Appendix A for further details on these finite-size clusters.

Our large choice of clusters provides a substantial step for-
ward with respect to other recent ED studies, where results
were obtained solely on N = 18 and N = 24 in Ref. 10 or on
N = 24 and N = 30 in Ref. 11.

In order to illustrate the need for a systematic study of clus-
ter geometries we present some data for the ground state en-
ergy per site. For instance, at vanishing V1/t, as shown in
Fig. 2(a), clusters with the K points yield the lowest energies
for large V2/t, i.e. are compatible with the appearing order (to
be discussed later).
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FIG. 2. (Color online) GS energy per site e0 vs V2/t for (a) V1 = 0
and (b) V1/t = 4 on various clusters. We refer to the Appendix A
for further details on these finite-size clusters. Lines are guide to the
eyes.

At V1/t = 4 and large V2/t, the situation becomes different
as now clusters involving M point(s) seem to have the lowest
energies, see Fig. 2(b). This is already a clear indication of
a phase transition between CDW (known to be stable at small
V2/t and large V1/t) and at least two other phases that we will
characterise later.

Clearly, the choice of clusters is important depending on
the parameters and the kind of instability. It was also pointed
out recently12 that the choice of boundary conditions might be
crucial too. By studying the N = 18 cluster with open bound-
ary conditions (OBC), as opposed to standard periodic bound-
ary conditions (PBC), the authors of Ref. 12 have found two
level crossings for V2/t ' 1.6 and V2/t ' 2.9 respectively
(for V1 = 0). This was taken as an indication for a stable QAH
phase in this region. We have checked that in this case, these
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We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional scalar chirality term
and show that a chiral spin liquid is stabilized in a sizeable region of the phase diagram. This topological
phase is situated in between a coplanar 120� Néel ordered and a non-coplanar tetrahedrally ordered phase.
Furthermore we discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare
the groundstates from Exact Diagonalization with a Dirac spin liquid wavefunction and propose a scenario
where this wavefunction describes the quantum critical point between the 120� magnetically ordered phase and
a putative Z2 spin liquid.

Introduction — The emergence of quantum spin liquids
in frustrated quantum magnetism is an exciting phenomenon
in contemporary condensed matter physics [1]. These novel
states of matter exhibit fascinating properties such as long-
range groundstate entanglement [2, 3] or anyonic braiding
statistics of quasiparticle excitations, relevant for a poten-
tial implementation of topological quantum computation [4].
Only very recently such phases have been found to be stabi-
lized in realistic local spin models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model
with only nearest neighbour interaction is known to stabi-
lize a regular 120� Néel order [20–23] adding further in-
teraction terms may increase frustration and induce mag-
netic disorder to the system. Experimentally, several ma-
terials with triangular lattice geometry do not exhibit any
sign of magnetic ordering down to lowest temperatures
[24–27]. These include for example the organic Mott in-
sulators like � (BEDT� TTF)2Cu2(CN)3 [24, 25] or
EtMe3Sb[Pd(dmit)2]2 [26, 27] and are thus candidates re-
alizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state closely related to the celebrated Laughlin wavefunction
of the fractional quantum Hall effect has recently been shown
to be the ground state of several extended Heisenberg models
on the kagomé lattice [5–7, 9]. The question arises whether a
CSL can indeed be realized on the triangular lattice as orig-
inally proposed. In a recent study [10] this was shown for
SU(N ) models for N � 3. In this letter we provide conclu-
sive evidence that indeed the CSL is stabilized in a spin-1/2
Heisenberg model upon adding a further scalar chirality term
J�

~Si · (~Sj ⇥ ~Sk) similar as in Refs. [6–8, 10]. Such a term
can be realized as a lowest order effective Heisenberg Hamil-
tonian of the Hubbard model upon adding � flux through the
elementary plaquettes [6, 29], either via a magnetic field or
by introducing artificial gauge fields in possible cold atoms
experiments [30, 31]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ⇠ t

2
/U and

J� ⇠ �t3/U2 where J1 (resp. J�) is the nearest neighbour
Heisenberg (resp. scalar chirality) coupling.

Another open question in frustrated magnetism of the trian-

gular lattice is the nature of the intermediate phase in the phase
diagram of the S = 1/2 Heisenberg model with added next-
nearest neighbour couplings around J2/J1 ⇡ 1/8. Several
authors [20, 32, 33] found a spin disordered state. Recently
several numerical studies [34–38] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this
Letter we advocate the presence of a O(4)⇤ quantum critical
point [39–41] separating the 120� Néel order from a putative
Z2 spin liquid. The diverging correlation length at this quan-
tum critical point and the neighbouring first order phase tran-
sition into the stripy collinear magnetic ordered phase render
the unambiguous identification of the intermediate spin liquid
phase challenging however.

Model — We investigate the Heisenberg model with near-
est and next-nearest neighbour interactions with an additional
uniform scalar chirality term on the triangular lattice

H = J1

X

hi,ji

~Si · ~Sj + J2

X

hhi,jii

~Si · ~Sj+

J�

X

i,j,k24

~Si · (~Sj ⇥ ~Sk)
(1)

where we set J1 ⌘ 1 and consider J2, J� � 0. Amongst a
120� Néel order, a stripy and a tetrahedral magnetic order we

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-J� model
on the triangular lattice, c.f. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36 sites triangular
simulation cluster, see main text for details.
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Quantum Matter

Standard Approach: Simulate system on a computer, calculate correlation 
functions, order parameter, and determine critical exponents. Can work very 
well, but does not have to… 

Here want to investigate whether the Energy Spectrum of a quantum many 
body system at criticality reveals its universality class (Spectroscopy) ?
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We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional scalar chirality term
and show that a chiral spin liquid is stabilized in a sizeable region of the phase diagram. This topological
phase is situated in between a coplanar 120� Néel ordered and a non-coplanar tetrahedrally ordered phase.
Furthermore we discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare
the groundstates from Exact Diagonalization with a Dirac spin liquid wavefunction and propose a scenario
where this wavefunction describes the quantum critical point between the 120� magnetically ordered phase and
a putative Z2 spin liquid.

Introduction — The emergence of quantum spin liquids
in frustrated quantum magnetism is an exciting phenomenon
in contemporary condensed matter physics [1]. These novel
states of matter exhibit fascinating properties such as long-
range groundstate entanglement [2, 3] or anyonic braiding
statistics of quasiparticle excitations, relevant for a poten-
tial implementation of topological quantum computation [4].
Only very recently such phases have been found to be stabi-
lized in realistic local spin models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model
with only nearest neighbour interaction is known to stabi-
lize a regular 120� Néel order [20–23] adding further in-
teraction terms may increase frustration and induce mag-
netic disorder to the system. Experimentally, several ma-
terials with triangular lattice geometry do not exhibit any
sign of magnetic ordering down to lowest temperatures
[24–27]. These include for example the organic Mott in-
sulators like � (BEDT� TTF)2Cu2(CN)3 [24, 25] or
EtMe3Sb[Pd(dmit)2]2 [26, 27] and are thus candidates re-
alizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state closely related to the celebrated Laughlin wavefunction
of the fractional quantum Hall effect has recently been shown
to be the ground state of several extended Heisenberg models
on the kagomé lattice [5–7, 9]. The question arises whether a
CSL can indeed be realized on the triangular lattice as orig-
inally proposed. In a recent study [10] this was shown for
SU(N ) models for N � 3. In this letter we provide conclu-
sive evidence that indeed the CSL is stabilized in a spin-1/2
Heisenberg model upon adding a further scalar chirality term
J�

~Si · (~Sj ⇥ ~Sk) similar as in Refs. [6–8, 10]. Such a term
can be realized as a lowest order effective Heisenberg Hamil-
tonian of the Hubbard model upon adding � flux through the
elementary plaquettes [6, 29], either via a magnetic field or
by introducing artificial gauge fields in possible cold atoms
experiments [30, 31]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ⇠ t

2
/U and

J� ⇠ �t3/U2 where J1 (resp. J�) is the nearest neighbour
Heisenberg (resp. scalar chirality) coupling.

Another open question in frustrated magnetism of the trian-

gular lattice is the nature of the intermediate phase in the phase
diagram of the S = 1/2 Heisenberg model with added next-
nearest neighbour couplings around J2/J1 ⇡ 1/8. Several
authors [20, 32, 33] found a spin disordered state. Recently
several numerical studies [34–38] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this
Letter we advocate the presence of a O(4)⇤ quantum critical
point [39–41] separating the 120� Néel order from a putative
Z2 spin liquid. The diverging correlation length at this quan-
tum critical point and the neighbouring first order phase tran-
sition into the stripy collinear magnetic ordered phase render
the unambiguous identification of the intermediate spin liquid
phase challenging however.

Model — We investigate the Heisenberg model with near-
est and next-nearest neighbour interactions with an additional
uniform scalar chirality term on the triangular lattice

H = J1

X

hi,ji

~Si · ~Sj + J2

X

hhi,jii

~Si · ~Sj+

J�

X

i,j,k24

~Si · (~Sj ⇥ ~Sk)
(1)

where we set J1 ⌘ 1 and consider J2, J� � 0. Amongst a
120� Néel order, a stripy and a tetrahedral magnetic order we

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-J� model
on the triangular lattice, c.f. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36 sites triangular
simulation cluster, see main text for details.

ar
X

iv
:1

60
4.

07
82

9v
1 

 [c
on

d-
m

at
.st

r-
el

]  
26

 A
pr

 2
01

6

3

level crossings correspond to two low-energy states having
opposite parities with respect to inversion symmetry. How-
ever, these crossings disappear when one considers the next
largest cluster N = 32 with OBC, so that it probably corre-
sponds to a short-range feature only. We generally think that
using PBC is more appropriate to minimize finite-size effects,
so this will be the case here.

Last, we would like to recall some features of the semi-
metallic (SM) phase that exists in the absence of interactions.
Since there is a vanishing density of states at the Fermi level,
one needs a finite strength of a short-ranged interaction to trig-
ger an instability16,17, so that SM phase must have a finite ex-

tension in the phase diagram.
Regarding possible gap opening mechanism of the SM

phase, Refs 18 and 19 have listed all explicit (i.e. external)
weak-coupling perturbations which can open a gap. In the
spinless case considered here, the three particle-hole related
gaps are: i) the Néel-like charge density wave, which breaks
the A-B sublattice symmetry, ii) the Kekulé distortion pattern,
which breaks translation symmetry by adopting a tripling of
the unit-cell of modulated bond-strengths (this order parame-
ter has a real and an imaginary part, thus corresponds to two
masses), and iii) the integer quantum Hall mass20, induced
by breaking the time-reversal invariance and parity symmetry
upon adding complex Peierls phases on next-nearest neighbor
hoppings, without enlarging the size of the unit-cell. In ad-
dition to the particle-hole gaps, there is also the possibility to
open gaps by the addition of superconducting order parame-
ters18,21,22, we will however not address these instabilities in
this work.

The model Hamiltonian (1) considered here features all the
usual symmetries. If the semi-metallic phase is gapped out
by interactions, then the gap opening has to happen through
the interactions by spontaneously breaking some of the sym-
metries. The case i) quoted before is a well known instabil-
ity, since the Néel CDW state is an obvious strong-coupling
ground state at large V1/t. The other instabilities ii) and iii)
currently lack a strong coupling picture, and need to be con-
firmed by numerical simulations. We note however that all
three particle-hole instabilities have been reported in mean-
field studies.4–6

C. Overview of the phase diagram

We start by drawing the global phase diagram that summa-
rizes our main findings, see Fig. 3. Its main features are the
existence of several types of charge or bond ordering for inter-
mediate to large V1 and/or V2 interactions: Néel CDW, charge
modulation (CM), zigzag (ZZ) phase, Néel domain wall crys-
tal (NDWC), and plaquette/Kekulé phase (P-K) that we will
clarify later. The large orange region (ST*) in the upper right
part of the phase diagram features a degeneracy at the semi-
classical level, and it is presently unclear whether and how an
order-by-disorder mechanism will lift the degeneracy. While
some of these phases (CM, P-K, CDW) had been predicted us-
ing mean-field studies6 and confirmed numerically in some re-
gions10,11, the others (including NDWC and ST* phase for re-

pulsive interactions and the ZZ phase for attractive V1) had not
been advocated before. Note already that the plaquette/Kekulé
(P-K) phase only exists in some bounded region for interme-
diate (V1, V2) values, and does not extend to strong coupling.

There is also a large region of phase separation, mostly for
strong attractive interactions, in agreement with the results of
Ref. 23 for V2 = 0. Possibly superconductivity is present in
parts of the attractive region of the phase diagram, but we did
not focus on this instability here.

Last but not least, we do not have any convincing evidence
for the stability of the QAH phase, as found in similar recent
numerical studies10,11 but in contradiction with another nu-
merical study using open boundary conditions and entangled-
plaquette ansatz.12
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FIG. 3. (Color online) Phase diagram in the (V1/t, V2/t) parameter
space obtained from several exact diagonalization techniques (see
text). Dashed lines represent the classical transition lines, see Fig. 4.
The semi-metal, which is the ground-state for non-interacting spin-
less fermions, has a finite extension in the phase diagram because of
its vanishing density of states at the Fermi level. We will argue in the
remainder of this article that several other phases can be stabilised for
intermediate and/or large interactions: Néel CDW, plaquette/Kekulé
(P-K), Néel domain wall crystal (NDWC), zigzag (ZZ) phase, and
charge modulation (CM). The region (ST*) is degenerate at the semi-
classical level, and it is presently unclear whether and how an order-
by-disorder mechanism will lift the degeneracy. Note also the large
region of phase separation mostly in the attractive quadrant. Filled
symbols correspond to numerical evidence (using level spectroscopy
or measurements of correlations, see Sec. IV) obtained mostly on a
N = 24 cluster which contains the most important points in its Bril-
louin zone and features the full lattice point group symmetry of the
honeycomb lattice. Star symbols denote likely first order transitions,
witnessed by level crossings on the same cluster. Our numerical re-
sults do not support any region of topological QAH phase.

We will now turn to the presentation of various numerical
data and considerations that we have used to come up with
this global phase diagram.



Spectroscopy in other areas: 

For example in optics and and mass spectroscopy one measures spectra, 
and then compares with a catalogue of known spectra to infer the nature of an 
“unknown” substance. 
 
 
 

Can we do the same with Quantum Field Theories at Quantum Critical Points ?

http://www.astro.rug.nl https://www2.chemistry.msu.edu



“Can one hear the shape of a drum” ?

Can one infer the shape of a domain from the spectrum of the Laplacian ? 
(not unambiguously, there are non-congruent shapes with the same spectrum) 

We would ask a related, but somewhat different question:  
Given a shape, can we “hear” the nature of the (massless) field theory  
confined to this shape ?

http://mathworld.wolfram.com/IsospectralManifolds.html

Amer. Math. Monthly 73, 1-23, 1966. 
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Operator spectrum in conformal field theories

A local operator has a scaling dimension: 

The scaling dimension determines the decay of the 2-point correlation function: 

It seems interesting and important to know the various fields with their 
corresponding scaling dimensions.  

Where can we find those in numerics ?

1.3 Towards a nonperturbative definition

We need a non-perturbative definition of a fixed point theory which does not make any reference
to the microscopic level (Lagrangian etc).

1.3.1 Operator spectrum

The first thing which characterizes any such theory is the spectrum of the local operators

Oi ! �i = scaling dimension . (1.29)

Once we know the dimension, the 2pt function is given by

hOi(x)Oi(0)i =
c

|x|2�i
, (1.30)

where the coe�cient c = 1 can be chosen as a normalization convention. Scale transformations
are written as

x ! �x , O(x) ! O(�x) = ���
O(x) . (1.31)

With this definition, the 2pt functions are invariant

hO(�x1)O(�x2)i =
1

|�x1 � �x2|
2�

= ��2�
hO(x1)O(x2)i . (1.32)

The scale transformation can be understood physically as an RG transformation which leaves
the Hamiltonian and the correlation functions invariant, as long as the operators are appropri-
ately rescaled.

The above discussion concerned scalar operators, but there will be operators with nonzero
spin as well. We consider Lorentz (or rotation) invariant theories, so the operators will come
in irreducible representations of the SO(D) group.

1.3.2 Stress tensor and currents

Among the local operators of the theory, a special role will be played by the stress tensor Tµ⌫

and conserved currents Jµ associated to global symmetries. The minimal set of QFT axioms
(Wightman axioms) don’t require existence of the stress tensor as the energy and momentum
density, but only of the full energy and momentum charges, and analogously for the conserved
currents. However, the existence of these operators is a natural extra assumption. It means
that the theory preserves some locality.

If the IR fixed point can be reached from a UV theory which has a weakly coupled
Lagrangian description (and thus has a stress tensor), then the existence of a stress tensor
in the IR is guaranteed. On the other hand, if we reach the critical point starting from a
lattice, the stress tensor existence is not obvious. On the lattice there is no stress tensor, but
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1D Torus (Circle) Energy Spectra

For CFTs energy spectra of finite size (1+1D) systems arrange into conformal towers ! 3
|j1, j2, . . .⟩ where for odd-numbered sites j2i+1 ∈ {0, 1}, and
for even numbered-sites j2i ∈ {1/2, 3/2}. This re-labeling
maps the matrix elements ofXi into those of ei from Eq. (5).
We can now see that the Hamiltonian in Eq. (1) is that cor-

responding to a standard (integrable) lattice model descrip-
tion of the classical 2D tricritical Ising model, known as the
RSOS model [14]. Specifically, the two-row transfer matrix
T := T2T1 of this lattice model, shown in Fig. 3, is written
in terms of Boltzmann weightsW[i] assigned to a plaquette i
of the square lattice

T1 :=
∏

n

W[2n] , and T2 :=
∏

n

W[2n + 1]

with

W[i]j⃗
′

j⃗
=

sin[ π
k+2 − u]

sin π
k+2

1
j⃗′

j⃗
+

sinu

sin π
k+2

e[i]j⃗
′

j⃗
. (6)

The parameter u > 0 is a measure of the lattice anisotropy,
1 is the identity operator, and

e[i]j⃗
′

j⃗
:=

⎡

⎣

∏

m ̸=i

δj′
m

,jm

⎤

⎦

(

e[i]ji+1

ji−1

)j′
i

ji

. (7)

The Hamiltonian of the so-defined lattice model is obtained
from its transfer matrix by taking, as usual [15], the extremely
anisotropic limit, u ≪ 1,

T = exp{−a(H+ c1) + O(a2)}, a =
uϕ

sin[π/(k + 2)]
≪ 1

yielding H = −
∑

i
1
ϕei (c1 is an unimportant constant).

Since the operatorsXi can be identified with ei, this demon-
strates that the Hamiltonian of the Fibonacci chain is exactly
that of the correspondingk = 3RSOSmodel which is a lattice
description of the tricritical Ising model at its critical point.
The latter is a well-known (supersymmetric) CFT with cen-
tral charge c = 7/10 [16, 17]. Analogously one obtains [18]
for general k the (k−1)st unitary minimal CFT [19] of central
charge c = 1−6/(k+1)(k+2). A ferromagnetically coupled
Fibonacci chain (energetically favoring the fusion along the τ -
channel) is described by the critical 3-state Potts model with
c = 4/5 and, for general k, by the critical Zk-parafermion
CFT [14, 18, 20] with central charge c = 2(k − 1)/(k + 2).

j
2n

j j
2n−1 2n+1

j’
2n

j’
2n−1

j’
2n+1

[2n+1]

W [2n]

W

FIG. 3: Transfer matrix of the RSOS model.
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FIG. 4: Energy spectra for periodic Fibonacci chains of size L = 36
and L = 37. The spectra have been rescaled and shifted such that
the two lowest eigenvalues match the conformal field theory assign-
ments. The open boxes indicate the positions of the primary fields
of the c = 7/10 conformal field theory. The open circles give the
positions of multiple descendant fields as indicated. While we find
excellent agreement in general, finite-size effects lead to small dis-
crepancies for the higher energy states. The solid line is a cosine-fit
of the dispersion which serves as a guide to the eye.

Excitation spectra We have calculated the excitation
spectra of chains up to size L = 37 with open and periodic
boundary conditions using exact diagonalization, as shown in
Fig. 4. The numerical results not only confirm the CFT pre-
dictions but also reveal some important details about the cor-
respondence between continuous fields and microscopic ob-
servables. In general, low-energy states on a ring are associ-
ated with local conformal fields [21], whose holomorphic and
antiholomorphic parts belong to representations of the Vira-
soro algebra, described by conformal weights hL and hR. The
energy levels are given by

E = E1L +
2πv

L

(

−
c

12
+ hL + hR

)

, (8)
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tricritical Ising CFT Spectrum in anyon chains

Understanding the 3D Ising Model CFT from Finite Lattice Energy Spectra ?

Andreas M. Läuchli1
1Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

I. INTRODUCTION

In these notes we study the transverse field Ising (TFI)
model on various spatial lattices in two dimensions.

The Hamiltonian is defined as follows:

H = �J
X

hi,ji

�z
i �

z
j � hx

X

i

�x
i , (1)

and we set J = 1 in the following.
Our goal is to understand to what extent the low-lying en-

ergy spectrum reveals information about the properties of the
underlying conformal field theory (CFT).

II. PERIODIC CHAIN

As a warmup and reminder we display the energy spectrum
of the linear periodic TFI chain in one spatial dimension. In
this setup the correspondence between the energy spectrum
and the scaling dimensions of the CFT is established through
the rich conformal symmetry group in 1+1D.

CFTs in any dimension (including D ¼ 3). In Sec. V we
present bounds on 3D CFTs that follow from crossing
symmetry and compare them to what is known about the
3D Ising model. Finally, we discuss our results and future
directions for this program in Sec. VI.

II. OPERATOR CONTENT OF THE
3D ISING MODEL

We assume that the reader is familiar with the basic facts
about the Ising model and the critical phenomena in gen-
eral; see [1,24– 27].

In this paper, we will be aiming for a solution of the 3D
Ising model in the continuum limit and at the critical
temperature T ¼ Tc. While the 2D Ising model was solved
exactly on the lattice and for any temperature by Onsager
and Kaufman in the 1940s, the 3D lattice case has resisted
all attempts for an exact solution. Istrail [28] proved in
2000 that solving the 3D Ising model on the lattice is a
NP-complete problem. However, this theorem does not
exclude the possibility of finding a solution in the
continuum limit.

The standard way to think about the continuum theory is
in terms of local operators (or fields). At T ¼ Tc, the theory
has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension
! and Oð3Þ spin. The operators of spin higher than 1 are
traceless symmetric tensors.

In Table I we list a few notable local operators, which
split into odd and even sectors under the global Z2 sym-
metry (the Ising spin flip). The operators ! and "are the
lowest dimension Z2-odd and even scalars respectively—
these are the continuum space versions of the Ising
spin and of the product of two neighboring spins on the
lattice. The two next-to-lowest scalars in each Z2-sector
are called !0 and "0. Their dimensions are related to the
irrelevant critical exponents !A and ! measuring correc-
tions to scaling. The operator "00 is analogously related to
the next-to-leading Z2-even irrelevant exponent !2. The
stress tensor T"# has spin 2 and, as a consequence of being
conserved, canonical dimension !T ¼ 3. The lowest-
dimension spin 4 operator C"#$% has a small anomalous
dimension, related to the critical exponent !NR measuring
effects of rotational symmetry breaking on the cubic lattice.

The approximate values of operator dimensions given
in the table have been determined from a variety of theo-
retical techniques, most notably the & expansion, high-
temperature expansion, and Monte Carlo simulations; see
p. 47 of Ref. [1] for a summary. The achieved precision is
rather impressive for the lowest operator in each class, but
quickly gets worse for the higher fields. While ultimately
we would like to beat the old methods, it would be unwise
to completely dismiss this known information and restart
from scratch. Rather, we will be using it for guidance while
sharpening our own methods.
Among the old techniques, the & expansion ofWilson and

Fisher [2] deserves a separate comment. The well-known
idea of this approach is that the 3D Ising critical point and
the 4D free scalar theory can be connected by a line of fixed
points by allowing the dimension of space to vary continu-
ously between 3 and 4. For D ¼ 4 $ &, the Wilson-Fisher
fixed point is weakly coupled and the dimensions of local
operators can be expanded order by order in &. For the most
important operators, like ! and ", these expansions have
been extended to terms of order as high as &5 [26], requiring
a five-loop perturbative field theory computation. However,
as often happens in perturbation theory, the resulting series
are only asymptotic. For the physically interesting case
& ¼ 1, their divergent nature already starts to show after
the first couple of terms. Nevertheless, after appropriate
resummation the & expansion produces results in agreement
with the other methods. So its basic hypothesis must be
right, and can give useful qualitative information about the
3D Ising operator spectrum, even where accurate quantita-
tive computations are missing.
It is now time to bring up the conformal invariance of the

critical point, conjectured by Polyakov [3]. This symmetry
is left unused in the renormalization group calculations
leading to the & expansion, and in most other existing
techniques.1 This is because it only emerges at the critical
point; it is not present along the flow. Conformal invariance
seems to be a generic feature of criticality, but why exactly
is not fully understood [31]. Recently there has been a
renewed interest in the question of whether there exist
interesting scale invariant but not conformal systems
[32– 37]. We will simply assume as a working hypothesis
that the 3D Ising critical point is conformal.
A nice experimental test of conformal invariance would

be to measure the three-point function h!ðxÞ!ðyÞ"ðzÞi on
the lattice, to see if its functional form agrees with the one
fixed by conformal symmetry [3]. We do not know if this
has been done.
Using 3D conformal invariance, local operators can be

classified into primaries and descendants [5]. The primar-
ies2 transform homogeneously under the finite-dimensional

TABLE I. Notable low-lying operators of the 3D Ising model
at criticality.

Operator Spin l Z2 ! Exponent

! 0 $ 0.5182(3) ! ¼ 1=2 þ '=2
!0 0 $ * 4:5 ! ¼ 3 þ !A

" 0 þ 1.413(1) ! ¼ 3 $ 1=#
"0 0 þ 3.84(4) ! ¼ 3 þ !
"00 0 þ 4.67(11) ! ¼ 3 þ !2

T"# 2 þ 3 n/a
C"#$% 4 þ 5.0208(12) ! ¼ 3 þ !NR

1Conformal invariance has been used in studies of critical
OðNÞ models in the large N limit [29,30].

2These are usually called quasiprimaries in 2D CFTs.
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FIG. 1. (Color online) Upper panel: Table from the literature with
some 3D Ising scaling dimensions. Lower panel: Ising CFT spec-
trum including some of the descendants.

In Fig. 2 we show the globally rescaled energy spectrum of
a finite Ns = 16 chain. The energy spectrum is arranged into
a combination of Virasoro towers on top of the three primary
fields (1, 1), (�,�), (✏, ✏) with scaling dimensions �(1,1) =
0, �(�,�) = 1/8, �(✏,✏) = 1. Note that the three primary
fields are all located at zero momentum. The structure on top
of the primary fields can be understood as the descendants in
two chiral sectors (R-L) corresponding to a shift of ±2⇡/L in
linear momentum [2].

III. TORUS (T2) APPROXIMANTS

IV. SPHERE (S2) APPROXIMANTS

Cardy pointed out that the infinite Rd can be conformally
mapped onto Sd�1

⇥ R. If the dimension R is interpreted
as the (imaginary) time direction this means that the energy
spectrum of a suitable quantum Hamiltonian is related to the
eigenvalues of the CFT dilatation operator L0 on Rd.

In Ref. [1] a first attempt to exploit this idea based on a tes-
selation of the sphere by platonic solids was presented. They
pointed out that it is difficult to perform finite size scaling due
to the varying coordination number of the vertices for the dif-
ferent Platonic solids.

They however conjectured that at the critical point the fol-
lowing formulas should hold:

Ee
1 � Ee

0 = �✏(E
o
1 � Eo

0), (2)

and

Eo
0 � Ee

0 = ��(E
o
1 � Eo

0). (3)
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FIG. 2. (Color online) Low energy spectrum of a periodic TFI chain
with Ns = 16. An assignment in terms of fields of the two chiral
sectors is given.

TFI chain L=16 
2D Ising CFT Spectrum

S1 ⇥ R

S1 R2 $ S1 ⇥ R Spectrum of scaling dimensions  
of CFT maps to Hamiltonian  
spectrum on a circle.  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In more than 1+1D, this relation does not hold for tori anymore, only for the sphere ! 

First mapping: radial quantisation, can reveal scaling dimensions in higher d, 
but not easily accessible to numerics (although several efforts over the decades).

Energy spectra and CFTs in more than 1+1D ?

Rd $ Sd�1 ⇥ R ( 6= Td�1 ⇥ R, d > 2)
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space x time



In more than 1+1D, this is not expected to hold anymore for tori ! 

First mapping: radial quantization, can reveal scaling dimension in higher d, 
but not easily accessible to numerics (although several efforts over the decades). 

What about energy spectra on tori, which are numerically accessible? 

Is there a universal low-energy spectrum (and is it accessible numerically) ?  

How does it look like ? 

Any analogy to the spectrum of scaling dimensions ?

Energy spectra and CFT in more than 1+1D ?

Rd $ Sd�1 ⇥ R ( 6= Td�1 ⇥ R, d > 2)

T2 ⇥ R
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We want to investigate the torus energy spectrum at a quantum critical point. 

While we do not expect to find the exact spectrum of scaling dimensions, the 
spectrum is still expected to be universal, i.e. UV cutoff independent.  

The spectrum could however depend on the IR-cutoff (shape of torus)  
(c.f. “hearing the shape of the drum”) 

We start with a Z2 symmetry breaking transition, and consider the  
transverse field Ising (TFI) model as a particular microscopic realization

2+1D “standard” Ising CFT 

Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra:
A Window into the Operator Content of Higher-Dimensional Conformal Field Theories

Michael Schuler,1 Seth Whitsitt,2 Louis-Paul Henry,1 Subir Sachdev,2, 3 and Andreas M. Läuchli1
1Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
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The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically
ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases
are largely unexplored for 2+1D systems. Using a combination of analytical and numerical techniques, we show
that the low-energy torus spectrum at criticality provides a universal fingerprint of the underlying quantum field
theory Using a combination of analytical and numerical techniques, we accurately calculate and analyse the low-
energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum
field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a
neighboring topological phase on the spectrum by studying the Ising* transition, in the example of the toric code
in a longitudinal field, and advocate a phenomenological picture that provides insight into the operator content
of the critical field theory.

PACS numbers: 05.30.Rt, 11.25.Hf, 75.10.Jm, 75.40.Mg1

Introduction — Quantum critical points continue to at-
tract tremendous attention in condensed matter, statistical me-
chanics and quantum field theory alike. Recent highlights in-
clude the discovery of quantum critical points which lie be-
yond the Ginzburg-Landau paradigm [1, 2], the striking suc-
cess of the conformal bootstrap program for Wilson-Fisher
fixed points [3], and the intimate connection between entan-
glement quantities and universal data of the critical quantum
field theory [4–8].

A surprisingly little explored aspect in this regard is the fi-
nite (spatial) volume spectrum on numerically easily acces-
sible geometries, such as the Hamiltonian spectrum on a 2D
spatial torus at the quantum critical point [9]. In the realm of
1+1D conformal critical points there exists a celebrated map-
ping between the spectrum of scaling dimensions of the field
theory in R2 and the Hamiltonian spectrum on a circle (space-
time cylinder: S1

⇥ R) [10]. This result is routinely used to
perform accurate numerical spectroscopy of conformal criti-
cal points using a variety of numerical methods [11, 12]. In
higher dimensions the situation is less favorable: Cardy has
shown [13] that the corresponding conformal map can be gen-
eralized to a map between Rd and Sd�1

⇥ R. While numeri-
cal simulations in this so-called radial quantization geometry
have been attempted at several occasions [14–18], this numer-
ical approach remains very challenging due to the curved ge-
ometry, which is inherently difficult to regularize in numerical
simulations.

Due to the absence of a known relation between the scaling
dimensions of the field theory and the torus energy spectra
our understanding of critical energy spectra is rather limited
beyond free theories [19–22].

In this Letter we present a combined numerical and analyt-
ical study of the Hamiltonian torus energy spectrum of the 3D
Ising conformal field theory (CFT). We demonstrate that the
torus energy spectrum provides a universal fingerprint of the

quantum field theory governing the critical point. It depends
only on the universality class of the transition and the shape
and boundary conditions of the torus, which acts as an in-
frared (IR) cutoff (but not on the lattice discretisation, i.e. the
ultraviolet cutoff). In this Letter we present a combined nu-
merical and analytical study of the Hamiltonian torus energy
spectrum of the 3D Ising conformal field theory (CFT), and
show that it is accessible with finite lattice studies and proper
finite-size scaling. Torus energy spectra provide a universal
fingerprint of the quantum field theory governing the critical
point and depend only on the universality class of the tran-
sition and the shape and boundary conditions of the torus,
which acts as an infrared (IR) cutoff (but not on the lattice dis-
cretisation, i.e. the ultraviolet cutoff), what we will explicitely
demonstrate here for the Ising CFT. This approach can thus be
regarded as a new numerical tool to investigate critical points.
We provide a quantitative analysis of many low-lying energy
levels of the standard Z2-symmetry breaking phase transition
in the 3D Ising universality class. We also advocate a phe-
nomenological picture that provides insight into the operator
content of the critical point. As an application we reveal that
the torus energy spectrum of the confinement transition be-
tween the Z2 topological ordered phase and the trivial (con-
fined) phase of the Toric code (TC) in a longitudinal magnetic
field can be understood as a specific combination of a subset
of the fields and several boundary conditions of the standard
3D Ising universality class. Since the operator content of the
partition function at criticality obviously differs from the stan-
dard 3D Ising universality class we term this transition a 3D
Ising* transition [23–25].

3D Ising universality class — In order to establish
demonstrate the universal nature of the low-energy spectrum
we study the 2+1D transverse field Ising (TFI) model

HTFI = �J
X

hi,ji

�z
i �z

j � h
X

i

�x
i (1)



“Raw” energy spectrum across the transition
small field: approx. 2-fold degeneracy due to Z2-symmetry breaking. 

large field: unique ground state in paramagnetic phase. 2
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FIG. 3. (Color online) Partial energy spectrum of the transverse field
Ising model on the square lattice for C4 (or C4v) symmetric samples
with Ns = 16, 17, 18, 20, 25(⇥2), 32. A very preliminary as-
signment of fields is attempted. The dashed magenta vertical lines
denotes the location of the quantum phase transition according to
QMC and ED finite size results. Lower panel: all symmetry sectors
for a Ns = 25 sample.

The idea being that (Eo
1 � Eo

0) measures the scale unit (de-
scendant spacing), while �✏ = (d � 1/⌫) and �� = 1

2 (d �

2 + ⌘) [3]

Cardy’s idea has been revived using (quantum) Monte
Carlo methods by Weigelt and Janke as well as Deng and
Blöte 10-15 years ago, and more recently by the high-energy
community.

So far: icosahedron (z = 5, Ns = 12) and dodecahedron
(z = 3, Ns = 20).

Further possibilities icosidodecahedron (z = 4, Ns = 30),
snub cube, ...

V. TO DO LIST

The following things should be done:

1. Simulations with antiperiodic boundary conditions

2. Simulations with open boundary conditions
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FIG. 4. (Color online) Upper panel: partial energy spectrum of the
transverse field Ising model on the triangular lattice for (at least) C6

(or C6v) symmetric amples with Ns = 12, 16, 19, 21, 27. The
dashed magenta vertical lines denotes the location of the quantum
phase transition from QMC results. Lower panel: all symmetry sec-
tors for a Ns = 27 sample.
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Detailed finite size scaling
Square lattice at critical transverse field hc:
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Comparison with a different lattice
Square lattice and Square-Octagon lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine 3D Ising CFT spectrum on a square torus !
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Comparison with different modular parameter
Triangular, honeycomb and kagome lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine Ising CFT spectrum on a hexagonal torus !

0.00 0.02 0.04 0.06 0.08 0.10

1/N

0

2

4

6

8

(E
�

E
0)
⇥
p

N
/�

0

�T (1.00)

�0
T (6.87)

�T + � (5.32)

1

"T (3.69)

"T + � (7.46)

⌧ = i - Square

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (7.01)

�T + � (5.41)

"T + � (7.56)

1

"T (3.78)

⌧ = i - Square-Octagon

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.93)

�T + � (5.77)

1

"T (3.73)

"T + � (7.82)

⌧ = 1
2 +

p
3

2 i - Triangular

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.99)

�T + � (5.72)

1

"T (3.76)

"T + � (7.84)

⌧ = 1
2 +

p
3

2 i - Honeycomb

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.91)

�T + � (5.74)

1

"T (3.73)

"T + � (7.81)

⌧ = 1
2 +

p
3

2 i - Kagome

 = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC



Comparing the different geometries
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The “square” and the “hexagonal” tori have a slightly different spectrum.  

The spectrum we see is the torus spectrum of the CFT  
describing the critical point.



Analytical approach: (4-epsilon)-expansion

Work done by S. Withsett and S. Sachdev. Lowest non-trivial order in epsilon.  

Rather good agreement between analytics and numerics. 

Zero-mode is most important in (4-epsilon)-expansion, anharmonic oscillator.

2

FIG. 1. The two torus geometries with 4-fold and 6-fold rota-
tion symmetry and their momentum-space grid in the vicinity of
the � = (0, 0) point. In the center of the lower row we display
the Wigner-Seitz cell of the torus, highlighting the 6-fold symmetry.
The momentum space variable  is defined as  = L

2⇡ |k|⌧2 with
⌧ = ⌧1 + i⌧2, L = |!1| = |!2| and k a momentum of the finite-size
cluster.

on five different two-dimensional Archimedian lattices [26]
at their respective quantum critical point [27][28]. In our fi-
nite size simulations the spatial setup is a torus whose linear
extents are determined by two spanning vectors !1 and !2

(c.f. left part of Fig. 1). The finite area leads to a discrete
momentum space (c.f. right part of Fig. 1) and is equivalent
to an infrared (IR) cutoff in the field theory. The use of a
lattice model on the other hand leads to an ultraviolet (UV)
cutoff in the form of a Brillouin zone. In the following we
will only consider tori with L = |!1| = |!2| and two dif-
ferent choices of the modular parameter ⌧ = !2/!1: ⌧ = i
(⌧ = 1/2 +

p
3/2i) corresponding to a square (hexagonal)

symmetry. The square and square-octagon (triangular, hon-
eycomb and kagome) lattices are simulated using a square
(hexagonal) IR-cutoff geometry to preserve the microscopic
C4 (C6) point group symmetry in the IR.

In a first step we have calculated the low-energy spectrum
of the Hamiltonian Eq. (1) using exact diagonalization (ED)
in all symmetry sectors on finite samples with up to N = 40
spins in total. The spectrum can be divided into Z2 even and
odd sectors (spin-flip symmetry), combined with irreducible
representations of the lattice space group. In the paramag-
netic phase at large h/J one finds a unique Z2 even ground
state in the fully symmetric spatial representation, with a fi-
nite gap above the ground state. At small h/J one finds two
quasi-degenerate ground states in the Z2 even and odd sec-
tor respectively (both in the symmetric spatial representation),
again with a finite gap above the ground state. At the quan-
tum critical point (h/J)c however the low-lying spectrum col-
lapses as 1/

p
N ⇠ 1/L, i.e. it exhibits a mass spectrum with

the mass scale set by the IR cutoff. To get rid of this scaling
we will multiply the excitation gaps with

p
N in the following

and will call that the spectrum. In Fig. 2 we display the finite
size spectra at the Ising critical point for all five different lat-
tices in the zero momentum sector � = (0, 0), as well as the

first momentum away from the � point ( = 1 in the right part
of Fig. 1). Since the speed of light is not known at this stage,
the spectrum for each lattice has been globally rescaled such
that the extrapolated energy of the first excited level (which
is Z2 odd and spatially symmetric) is set to one. One nicely
explicitely observes that the critical energy spectra of lattices
with the same type of IR cutoff ⌧ (the two leftmost panels and
the three rightmost panels) agree to rather high precision with
each other, when taking 1/N finite-size corrections into ac-
count. This means that the obtained critical energy spectra
indeed do not depend on the chosen UV discretization as it is
generally expected from a field theory point of view. In order
to corroborate the extrapolations based on ED we performed
extensive Quantum Monte Carlo (QMC) simulations [27] of
the transverse field Ising model at the critical point for all
five lattices. Based on imaginary time spin-spin correlations
it is possible to access the finite size gaps on lattices up to
N = 30 ⇥ 30 lattice sites. These data points (red small filled
circles) in Fig. 2 reproduce the ED data where available, and
allow us to confirm and sharpen the precision of the extrap-
olated energy spectrum. Based on the quantum numbers of
the first few low-lying energy levels we choose to label them
as torus analogues of the spectrum of scaling dimensions of
the 3D Ising CFT: �T and �0

T refer to the first two levels in
the Z2 odd sector in the spatially symmetric representation,
while ✏T is the first excited state (above the vacuum 1) in the
Z2 even and spatially symmetric sector. The ”. . . + �” la-
bel refers to levels at the first momentum away from the �
point,  = 1. These levels are four-fold degenerate on the
square torus, while they are six-fold degenerate for the hexag-
onal torus. Although there is no known relation between
the torus spectrum and the scaling dimensions in flat space,
this phenomenological approach shows a qualitatively similar
structure as the operator content of the quantum field theory.

✏-expansion — We also compute the energy levels using
✏-expansion. Our starting point is �4 theory, which we define
by the Hamiltonian density

H =
Z

ddx


1
2
⇧2 +

1
2
(r�)2 +

s

2
�2 +

u

4!
�4

�
(2)

in d dimensions with the equal-time commutator
[�(x, t),⇧(x0, t)] = i�d(x � x0), and specialize to the
critical point, s = sc, u = u⇤. We generalize the two-
dimensional torus to arbitrary dimension by taking d/2
copies of the desired torii in Fig. 1, so that all spatial point-
symmetries are preserved during the calculation and no extra
length scales are introduced.

Our approach to the critical theory in a finite volume origi-
nated from Lüscher [29], and was extended to deal with finite
size criticality in classical systems by others [30, 31]. The
key observation is that the zero mode of the field generates in-
curable infrared divergences in perturbation theory, so it must
be separated and treated non-perturbatively. In the context of
the finite-size spectrum, this can be understood from Eq. (2)
by noticing that the Gaussian theory at s = 0 does not con-
tain any potential term for the zero mode, giving a continu-

3

FIG. 2. Normalized low-energy torus spectrum for the Ising QFT for the modular parameters ⌧ = i and ⌧ = 1/2 +
p

3/2i obtained with ED
(large symbols) and QMC (small red filled circles). Filled (empty) symbols denote Z2 even (odd) levels. Linear fits in 1/N for levels with
 = 0 ( = 1) are shown by blue solid (green dashed) lines (cf. color coding in Fig. 1) and the values of the fields after extrapolation to the
thermodynamic limit 1/N ! 0 are given in parentheses. The normalization constant �0 is chosen such that the first Z2 odd level extrapolates
to one. We observe a universal torus spectrum for the lattices with the same type of IR cutoff (same ⌧ ).

By splitting the fields in Eq. (2) and proper normalization
of the zero-mode terms the Hamiltonian can be decomposed
into a quadratic part H0 describing the Fock spectrum of the
finite-momentum modes, and an interaction part V containing
all zero-mode contributions and non-linearities.

At zeroth order, our states are given by finite momentum
Fock states multiplied by arbitrary functionals of the zero
mode, so these states are infinitely degenerate. We then derive
an effective Hamiltonian within each degenerate subspace us-
ing a perturbation method due to C. Bloch [40]. This effective
Hamiltonian acts in a degenerate subspace, but its eigenvalues
correspond to the exact eigenvalues of the original Hamilto-
nian to desired order. It turns out, that the effective Hamilto-
nians take the form of a strongly-coupled oscillator with co-
efficients depending on the degenerate subspaces. The coeffi-
cients of the more complicated expansion for the energy levels
(expansion in ✏1/3) can be found in [41]. In addition, the ef-
fective Hamiltonian will couple different Fock states with the
same energy and momentum whenever possible, leading to
off-diagonal terms. These off-diagonal terms were computed
numerically from the unperturbed wave-function. Further de-
tails about the ✏-expansion approach can be found in the Sup-
plemental Material [42].

In Fig. 3 we show the universal torus spectrum obtained
from ✏-expansion for the two choices of ⌧ and compare it
to numerical results from ED and QMC computations [43]
normalized by the speed of light c [44][45]. We observe
a remarkable agreement between the two different methods.
This further illustrates the interpretation of the torus spectra
as a universal fingerprint of the critical field theory and their
accessability from numerical finite lattice simulations. The
larger discrepancies between numerical and ✏-expansion data
for some higher levels in the spectrum may result from the
extrapolation to the thermodynamic limit using only ED data
with strong finite-size effects, especially for  > 0 [46].

2+1D Ising* universality class — In this section we are
investigating the confinement transition of a Z2 spin liquid.

Such a topological quantum phase transition is characterized
by the lack of any local order parameters. Z2 spin liquids
are characterized by the presence of two bosons, the e and m
particles. These fractionalized particles can only be created
in pairs and obey mutual anyonic statistics. The confinement
transition can then be driven by condensing either the e or
the m particles. Without loss of generality, we will consider
the condensation of the m particles and call it’s correspond-
ing field �. The critical theory turns out to be that of Ising*:
� can only be created in pairs, so the effective Lagrangian
must be even in a real field �, implying we should only in-
clude Z2 even states in a critical Ising theory. In addition, �
and �� are physically indistinguishable, and so both periodic
and anti-periodic boundary conditions have to be considered.
We emphasize that this mapping is independent of any spe-
cific microscopic lattice model and should hold generically
between universal theories and their topological counterparts.
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Comparison between torus and sphere spectra

Torus spectra at low energy per sector resemble the spectrum on the sphere: 

We believe this handwaving resemblance might be more generally the case: 
“light states on the sphere have a light analogon on the torus”   

But likely no state operator correspondence on the torus.
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 = 0 ( = 1) are shown by blue solid (green dashed) lines (cf. color coding in Fig. 1) and the values of the fields after extrapolation to the
thermodynamic limit 1/N ! 0 are given in parentheses. The normalization constant �0 is chosen such that the first Z2 odd level extrapolates
to one. We observe a universal torus spectrum for the lattices with the same type of IR cutoff (same ⌧ ).

By splitting the fields in Eq. (2) and proper normalization
of the zero-mode terms the Hamiltonian can be decomposed
into a quadratic part H0 describing the Fock spectrum of the
finite-momentum modes, and an interaction part V containing
all zero-mode contributions and non-linearities.
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from ✏-expansion for the two choices of ⌧ and compare it
to numerical results from ED and QMC computations [43]
normalized by the speed of light c [44][45]. We observe
a remarkable agreement between the two different methods.
This further illustrates the interpretation of the torus spectra
as a universal fingerprint of the critical field theory and their
accessability from numerical finite lattice simulations. The
larger discrepancies between numerical and ✏-expansion data
for some higher levels in the spectrum may result from the
extrapolation to the thermodynamic limit using only ED data
with strong finite-size effects, especially for  > 0 [46].
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investigating the confinement transition of a Z2 spin liquid.

Such a topological quantum phase transition is characterized
by the lack of any local order parameters. Z2 spin liquids
are characterized by the presence of two bosons, the e and m
particles. These fractionalized particles can only be created
in pairs and obey mutual anyonic statistics. The confinement
transition can then be driven by condensing either the e or
the m particles. Without loss of generality, we will consider
the condensation of the m particles and call it’s correspond-
ing field �. The critical theory turns out to be that of Ising*:
� can only be created in pairs, so the effective Lagrangian
must be even in a real field �, implying we should only in-
clude Z2 even states in a critical Ising theory. In addition, �
and �� are physically indistinguishable, and so both periodic
and anti-periodic boundary conditions have to be considered.
We emphasize that this mapping is independent of any spe-
cific microscopic lattice model and should hold generically
between universal theories and their topological counterparts.
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Wilson-Fisher Z2 / O(2) / O(3) Results

Torus spectra at low energy (still) resemble the spectrum on the sphere:
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FIG. 9. Critical low-energy torus spectra for the discussed O(N) CFTs for  = 0 and `  4 compared to

the operator scaling dimensions of the CFTs from Refs. [7, 41]. The spectra and scaling dimensions are

normalized by the gap �0 to the first excited state with ` = 0. Full symbols denote results from numerics

(ED), open symbols show ✏-expansion results. Half-filled symbols show the operator scaling dimensions of

the corresponding CFTs as a comparison. The di↵erent symbols represent the di↵erent values of `. The

numbers in parentheses give the degeneracy of the levels. The level structure including degeneracies is

qualitatively di↵erent between the distinct CFTs and can be considered as a universal fingerprint of the

CFT. The operator scaling dimensions correspond to the critical energy spectrum of the Hamiltonians on

a sphere. Interestingly, the structure of the operator dimensions and the torus spectrum are very similar

for the low levels with an additional low ` = 1 level in the torus spectrum.

conformal invariance does not lead to simple and exact results, and that our calculations aid in

identifying critical behavior in numerical studies of quantum lattice models by investigation of the

critical energy spectrum. The methods used in this work should also be applicable to computing

the finite-size spectra of other CFTs, such as an ✏-expansion approach to the Gross-Neveu-Yukawa

CFT.

Another application of the present results is to a class of deconfined quantum critical points

known as the O(N)⇤ models. These are described by the same field theory as the O(N) model

except that the order parameter carries a Z2 gauge redundancy, imposing an equivalence relation

� ⇠ �� [42, 43]. In these models, the order parameter � can be thought of as the spinon in a Z2

spin liquid, whose condensation results in a confinement phase transition accompanied by broken
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Confinement transition
Z2 spin liquids are among the simplest topological phases.  

The are phases with a four-fold ground state degeneracy on a torus, but 
the degeneracy is topological, and not related to symmetry breaking. 

One of the simplest incarnations of this phase appears in the Toric Code 
model by Kitaev. 

By an appropriate perturbation the topological phase (“deconfined”) gives way 
to a simple paramagnetic phase (“confined”). The transition is a confinement 
transition and is expected to be in the 2+1D = 3D Ising universality class. 

Q: Is the torus spectrum at criticality identical to the symmetry breaking case ?



Toric code in a magnetic field

We study the following microscopic model  
(but results will be independent of specific model): 

Toric code with a longitudinal magnetic field (S. Trebst et al., J. Vidal et al, …):

1

Supplemental Material: Universal Signatures of
Quantum Critical Points from Finite-Size Torus

Spectra

LATTICE GEOMETRIES

FIG. 1. The different lattice geometries used for the TFI model. The
red boxes indicate the lattice basis cells, the arrows mark the Bravais-
vectors. The square and square-octagon lattices obey a C4 rotational
symmetry, the triangular, honeycomb and kagome lattices a C6 rota-
tional symmetry.

MAPPING THE PERTURBED TORIC CODE ONTO THE
TRANSVERSE FIELD ISING MODEL

In this section, we demonstrate an exact mapping of the
charge-free sector of the Toric Code model perturbed by a
longitudinal field to a transverse field Ising model with only
even states under spin-inversion. Such a mapping has already
been used in previous studies of the Toric Code [1–3], here we
will additionally show that the different groundstate sectors of
the Toric Code result in different boundary conditions of the
transverse field Ising model.

FIG. 2. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i , grey squares the dual lattice for the
variables µx,z

p . T1,2 depict a choice of the two incontractible loops
winding around the torus. See text for further details.

The Hamiltonian of the Toric Code in a longitudinal field is
given by

H = �J

X

s

As � J

X

p

Bp � h

X

i

�
x
i (1)

As =
Y

i2s

�
x
i , Bp =

Y

i2p

�
z
i (2)

where the �i describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All As and Bp

commute with each other and thus the GS of the Hamiltonian
for h = 0 can be found by setting As = 1 8s and Bp = 1 8p.
On a torus, however, not all of the As and Bp are linearly inde-
pendent, as

Q
s As = 1 and

Q
p Bp = 1, leading to a 4-fould

degenerate groundstate manifold. This groundstate manifold
can be distinguished by the expectation values of the Wilson
loop operators t1,2 =

Q
i �

x
i where the paths wind around the

torus along two non-contractible loops through the centers of
the edges of the lattice (e.g. parallel to T1,2 in Fig. 2).

To perform the mapping to a transverse field Ising model
we first note, that As and t1,2 are still conserved for h 6= 0,
when the longitudinal field is turned on. So, we consider
the charge-free sector, As = 1 8s, which describes the low-
energy physics even at criticality, and define the new variables

µ
z
p = Bp (3)

µ
x
p,!(") =

Y

i2cp!(")

�
x
i (4)

on each site p of the dual lattice (center of plaquette p) [2]. We
choose two incontractible paths T1,2 in x̂(ŷ) direction along
the lattice. The path cp!(") is then a straight path from T2(1)

to the site p in x̂(ŷ)-direction along the dual lattice (cf. Fig. 2).
It is straightforward to show that these variables fulfill the
Pauli-Algebra {µx

p , µ
z
p} = 0, (µx

p)
2 = 1 and that

�
x
i (x̂) = µ

x
p(i),"µ

x
p(i)�ŷ," (5)

�
x
i (ŷ) = µ

x
p(i),!µ

x
p(i)�x̂,! (6)

where �
x
i (x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-

direction on the lattice.
With this, the TC eventually maps onto the well-known TFI

model

HTFI = �h

X

hp,qi

µ
x
pµ

x
q � Jp

X

p

µ
z
q + const. (7)

on the dual lattice and As = 1 8s, as it was imposed.
The resulting transverse field Ising model (7) is invariant

under global spin-inversion I =
Q

p µ
z
p. From (3) it immedi-

ately follows that

I =
Y

p

Bp = 1 (8)

where the last equality is always satisfied on a torus and so the
Toric Code maps to an even transverse field Ising model.
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red boxes indicate the lattice basis cells, the arrows mark the Bravais-
vectors. The square and square-octagon lattices obey a C4 rotational
symmetry, the triangular, honeycomb and kagome lattices a C6 rota-
tional symmetry.

Mapping the perturbed Toric Code onto the transverse field
Ising model

In this section, we demonstrate an exact mapping of the
charge-free sector of the Toric Code model perturbed by a lon-
gitudinal field to a transverse field Ising model with only even
states under spin-inversion. Such a mapping has already been
used in previous studies of the Toric Code [47, 53, 54], here
we will additionally show that the different groundstate sec-
tors of the Toric Code result in different boundary conditions
of the transverse field Ising model.

FIG. 6. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i , grey squares the dual lattice for the
variables µx,z

p . T1,2 depict a choice of the two incontractible loops
winding around the torus. See text for further details.

The Hamiltonian of the Toric Code in a longitudinal field is
given by

H = �J
X

s

As � J
X

p

Bp � h
X

i

�x
i (4)

As =
Y

i2s

�x
i , Bp =

Y

i2p

�z
i (5)

where the �i describe spins on the links of a square lattice, p
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for h = 0 can be found by setting As = 1 8s and Bp = 1 8p.
On a torus, however, not all of the As and Bp are linearly inde-
pendent, as
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s As = 1 and
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p Bp = 1, leading to a 4-fould

degenerate groundstate manifold. This groundstate manifold
can be distinguished by the expectation values of the Wilson
loop operators t1,2 =
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i where the paths wind around the

torus along two non-contractible loops through the centers of
the edges of the lattice (e.g. parallel to T1,2 in Fig. 6).
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the charge-free sector, As = 1 8s, which describes the low-
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We choose two incontractible paths T1,2 in x̂(ŷ) direction
along the lattice. The path cp!(") is then a straight path
from T2(1) to the site p in x̂(ŷ)-direction along the dual lattice
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on the dual lattice and As = 1 8s, as it was imposed.
The resulting transverse field Ising model Eq. (10) is invari-

ant under global spin-inversion I =
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p µ
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p. From Eq. (6) it

immediately follows that

I =
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Bp = 1 (11)

where the last equality is always satisfied on a torus and so the
Toric Code maps to an even transverse field Ising model.
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Mapping the perturbed Toric Code onto the transverse field
Ising model

In this section, we demonstrate an exact mapping of the
charge-free sector of the Toric Code model perturbed by a lon-
gitudinal field to a transverse field Ising model with only even
states under spin-inversion. Such a mapping has already been
used in previous studies of the Toric Code [47, 53, 54], here
we will additionally show that the different groundstate sec-
tors of the Toric Code result in different boundary conditions
of the transverse field Ising model.
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for h = 0 can be found by setting As = 1 8s and Bp = 1 8p.
On a torus, however, not all of the As and Bp are linearly inde-
pendent, as
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s As = 1 and
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loop operators t1,2 =
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i where the paths wind around the

torus along two non-contractible loops through the centers of
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To perform the mapping to a transverse field Ising model
we first note, that As and t1,2 are still conserved for h 6= 0,
when the longitudinal field is turned on. So, we consider
the charge-free sector, As = 1 8s, which describes the low-
energy physics even at criticality, and define the new variables

µz
p = Bp (6)
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along the lattice. The path cp!(") is then a straight path
from T2(1) to the site p in x̂(ŷ)-direction along the dual lattice
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In this section, we demonstrate an exact mapping of the
charge-free sector of the Toric Code model perturbed by a lon-
gitudinal field to a transverse field Ising model with only even
states under spin-inversion. Such a mapping has already been
used in previous studies of the Toric Code [47, 53, 54], here
we will additionally show that the different groundstate sec-
tors of the Toric Code result in different boundary conditions
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where the �i describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All As and Bp

commute with each other and thus the GS of the Hamiltonian
for h = 0 can be found by setting As = 1 8s and Bp = 1 8p.
On a torus, however, not all of the As and Bp are linearly inde-
pendent, as
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s As = 1 and
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p Bp = 1, leading to a 4-fould
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can be distinguished by the expectation values of the Wilson
loop operators t1,2 =
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torus along two non-contractible loops through the centers of
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To perform the mapping to a transverse field Ising model
we first note, that As and t1,2 are still conserved for h 6= 0,
when the longitudinal field is turned on. So, we consider
the charge-free sector, As = 1 8s, which describes the low-
energy physics even at criticality, and define the new variables
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(cf. Fig. 6). It is straightforward to show that these variables
fulfill the Pauli-Algebra {µx

p , µ
z
p} = 0, (µx

p)
2 = 1 and that

�x
i (x̂) = µx

p(i),"µ
x
p(i)�ŷ," (8)

�x
i (ŷ) = µx

p(i),!µx
p(i)�x̂,! (9)

where �x
i (x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-

direction on the lattice.
With this, the TC eventually maps onto the well-known TFI

model

HTFI = �h
X

hp,qi

µx
pµ

x
q � Jp

X

p

µz
q + const. (10)

on the dual lattice and As = 1 8s, as it was imposed.
The resulting transverse field Ising model Eq. (10) is invari-

ant under global spin-inversion I =
Q

p µ
z
p. From Eq. (6) it

immediately follows that

I =
Y

p

Bp = 1 (11)

where the last equality is always satisfied on a torus and so the
Toric Code maps to an even transverse field Ising model.

TFI boundary conditions imposed 
 by T1,T2 loops !
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The spectra at criticality do not agree ! What is going on ?
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the condensation of the m particles and call it’s corresponding
field �. The critical theory turns out to be Ising*: � can only
be created in pairs, so the effective Lagrangian must be even in
a real field �, implying we should only include Z2 even states
in a critical Ising theory. In addition, � and �� are physi-
cally indistinguishable, and so both periodic and anti-periodic
boundary conditions have to be considered. We want to em-
phasize that this mapping is independent of any specific mi-
croscopic lattice model and should hold generically between
universal theories and their topological counterparts.

As a microscopic model illustrating this transition we study
the critical energy spectrum of the Toric Code Hamiltonian
perturbed by a longitudinal field [38–42]:

HTC = �J
P

s As � J
P

p Bp � h
P

i �x
i (3)

As =
Q

i2s �x
i , Bp =

Q
i2p �z

i

The �i describe S = 1/2-spins on the 2N edges of a square
lattice, p denotes a plaquette and s a star on the lattice. All
As and Bp commute with each other and so the model can
be solved analytically for h = 0 by setting As = 1 8s and
Bp = 1 8p [43]. On a torus the ground state manifold is,
however, four-fold degenerate and can be characterized by the
eigenvalues±1 of Wilson loops winding around the torus. An
e (m) particle is described by setting As = �1 (Bp = �1)
on a star (plaquette). The longitudinal field introduces a dis-
persion for the m particles which finally condense and drive
the phase transition at h = hc by confinement of the e parti-
cles [23–25, 38].

The above considerations regarding the relationship be-
tween Ising and Ising* QFT can be made very explicit for
the Toric Code. The Toric Code Eq. (3) in the sector without
e particles (As = 1 8s) can be exactly mapped to an even TFI
model on the dual square lattice with N sites, where only the
even spin-flip sector is present [38, 44, 45]. The groundstate
manifold, described by the eigenvalues of the Wilson loops,
maps to both, periodic and anti-periodic boundary conditions
of the Ising model [46]. In the following we will make use of
this mapping to compute the finite-size torus spectrum of the
Ising* transition for ⌧ = i using ED.

In the left part of Fig. 4 we present the low-energy finite-
size spectrum of the Ising* transition obtained with ED sim-
ulations. The spectrum is rescaled with the same factor �0

as in Fig. 2 such that they can be easily compared. The rela-
tionship between the critical Ising and Ising* theories results
in the fact that the levels called "T (+�) in Fig. 2 are identi-
cally present in the Ising* spectrum (c.f. P/P levels in Fig. 4).
The most remarkable feature, however, is the presence of very
low-lying levels in the spectrum. They arise from the ground-
state manifold in the spin-liquid phase, where their splitting
exponentially scales to zero with L. At criticality they, how-
ever, scale as 1/

p
N as the entire low-energy spectrum. The

small relative splitting of the four lowest levels is surprisingly
small. The right panel of Fig. 4 shows a comparison of the
universal torus spectrum for an Ising* transition obtained with
ED and ✏-expansion similar to Fig. 3 [47]. A zoom into the
conspicous low-energy levels is shown in the inset. Again we

FIG. 4. Universal torus spectra for the Ising* QFT and the mod-
ular parameters ⌧ = i. The labels A/P etc. denote the boundary
conditions along the two directions of the torus, where P(A) means
(anti-)periodic. Left: Normalized low-energy spectrum from ED
with the same normalization constant �0 as in Fig. 2. The levels
in the P/P sector are the "T (+�) levels from the TFI spectrum. A
very remarkable feature are the four very low-lying levels which gov-
ern the four-fold degenerate groundstate manifold in the deconfined
phase. See Fig. 2 for further details. Right: Full symbols denote
numerical results obtained by ED, while empty symbols denote ✏-
expansion results. The dashed line shows a dispersion with the speed
of light. The inset is a zoom into the four lowest levels. See Fig. 3
for further details.

observe a decent agreement of the different methods fortify-
ing the idea of a universal torus spectrum also for the Ising*
transition This explicitely demonstrates, that the effect of a
neighbouring Z2 topological phase on the critical torus spec-
trum is not just an artefact of the exact mapping in the special
case of the Toric Code considered here for numerical simula-
tions.

Conclusions — We have shown that the torus energy
spectrum provides a characteristic fingerprint of the confor-
mal field theory and its operator content governing a quan-
tum critical point in 2+1D. We have computed the universal
torus energy spectrum for the Ising and Ising* transitions in
2+1D providing a characteristic fingerprint of the correspond-
ing conformal field theories and have highlighted the implica-
tions of a neighbouring Z2 spin liquid on the torus spectrum.
Additionally, we have presented a phenomenological picture

based on the quantum numbers of the individual energy levels
which shows a qualitatively similar structure as the operator
content of the field theory. Using the numerical and analyt-
ical technology presented in this paper it will be possible to
inspect and chart the characteristic spectrum of more complex
quantum critical points, such as O(N) Wilson-Fisher fixed
points, Gross-Neveu-Yukawa type phase transitions in inter-
acting Dirac fermion models [48, 49] or designer Hamiltoni-
ans displaying deconfined criticality [2].

A.M.L. thanks R.C. Brower, J.L. Cardy and A.W. Sand-
vik for discussions. L.-P.H. and M.S. acknowledge support
through the Austrian Science Fund SFB FoQus (F-4018).
S.W. and S.S. are supported by the U.S. NSF under Grant
DMR-1360789. We thank A. Wietek for his help on com-
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The Ising* transition

The explanation is that the operator content of the two transitions are different: 

In the Z2 symmetry breaking case we have Z2 even and odd levels and only 
one set of boundary conditions (fixed by the lattice model). 

In the confinement transition (Ising*), only Z2 even levels are allowed, and for  
periodic boundary conditions in the Toric Code, four different boundary 
conditions of the CFT become simultaneously apparent. 

This can be understood at the microscopic level in the Toric Code Hamiltonian 
and is supported by general field theoretical considerations. 

In the Ising* case the magnetic sector is completely absent, and the torus 
energy spectrum reflects this fact. 

�
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the condensation of the m particles and call it’s corresponding
field �. The critical theory turns out to be Ising*: � can only
be created in pairs, so the effective Lagrangian must be even in
a real field �, implying we should only include Z2 even states
in a critical Ising theory. In addition, � and �� are physi-
cally indistinguishable, and so both periodic and anti-periodic
boundary conditions have to be considered. We want to em-
phasize that this mapping is independent of any specific mi-
croscopic lattice model and should hold generically between
universal theories and their topological counterparts.

As a microscopic model illustrating this transition we study
the critical energy spectrum of the Toric Code Hamiltonian
perturbed by a longitudinal field [38–42]:

HTC = �J
P

s As � J
P

p Bp � h
P

i �x
i (3)

As =
Q

i2s �x
i , Bp =

Q
i2p �z

i

The �i describe S = 1/2-spins on the 2N edges of a square
lattice, p denotes a plaquette and s a star on the lattice. All
As and Bp commute with each other and so the model can
be solved analytically for h = 0 by setting As = 1 8s and
Bp = 1 8p [43]. On a torus the ground state manifold is,
however, four-fold degenerate and can be characterized by the
eigenvalues±1 of Wilson loops winding around the torus. An
e (m) particle is described by setting As = �1 (Bp = �1)
on a star (plaquette). The longitudinal field introduces a dis-
persion for the m particles which finally condense and drive
the phase transition at h = hc by confinement of the e parti-
cles [23–25, 38].

The above considerations regarding the relationship be-
tween Ising and Ising* QFT can be made very explicit for
the Toric Code. The Toric Code Eq. (3) in the sector without
e particles (As = 1 8s) can be exactly mapped to an even TFI
model on the dual square lattice with N sites, where only the
even spin-flip sector is present [38, 44, 45]. The groundstate
manifold, described by the eigenvalues of the Wilson loops,
maps to both, periodic and anti-periodic boundary conditions
of the Ising model [46]. In the following we will make use of
this mapping to compute the finite-size torus spectrum of the
Ising* transition for ⌧ = i using ED.

In the left part of Fig. 4 we present the low-energy finite-
size spectrum of the Ising* transition obtained with ED sim-
ulations. The spectrum is rescaled with the same factor �0

as in Fig. 2 such that they can be easily compared. The rela-
tionship between the critical Ising and Ising* theories results
in the fact that the levels called "T (+�) in Fig. 2 are identi-
cally present in the Ising* spectrum (c.f. P/P levels in Fig. 4).
The most remarkable feature, however, is the presence of very
low-lying levels in the spectrum. They arise from the ground-
state manifold in the spin-liquid phase, where their splitting
exponentially scales to zero with L. At criticality they, how-
ever, scale as 1/

p
N as the entire low-energy spectrum. The

small relative splitting of the four lowest levels is surprisingly
small. The right panel of Fig. 4 shows a comparison of the
universal torus spectrum for an Ising* transition obtained with
ED and ✏-expansion similar to Fig. 3 [47]. A zoom into the
conspicous low-energy levels is shown in the inset. Again we

FIG. 4. Universal torus spectra for the Ising* QFT and the mod-
ular parameters ⌧ = i. The labels A/P etc. denote the boundary
conditions along the two directions of the torus, where P(A) means
(anti-)periodic. Left: Normalized low-energy spectrum from ED
with the same normalization constant �0 as in Fig. 2. The levels
in the P/P sector are the "T (+�) levels from the TFI spectrum. A
very remarkable feature are the four very low-lying levels which gov-
ern the four-fold degenerate groundstate manifold in the deconfined
phase. See Fig. 2 for further details. Right: Full symbols denote
numerical results obtained by ED, while empty symbols denote ✏-
expansion results. The dashed line shows a dispersion with the speed
of light. The inset is a zoom into the four lowest levels. See Fig. 3
for further details.

observe a decent agreement of the different methods fortify-
ing the idea of a universal torus spectrum also for the Ising*
transition This explicitely demonstrates, that the effect of a
neighbouring Z2 topological phase on the critical torus spec-
trum is not just an artefact of the exact mapping in the special
case of the Toric Code considered here for numerical simula-
tions.

Conclusions — We have shown that the torus energy
spectrum provides a characteristic fingerprint of the confor-
mal field theory and its operator content governing a quan-
tum critical point in 2+1D. We have computed the universal
torus energy spectrum for the Ising and Ising* transitions in
2+1D providing a characteristic fingerprint of the correspond-
ing conformal field theories and have highlighted the implica-
tions of a neighbouring Z2 spin liquid on the torus spectrum.
Additionally, we have presented a phenomenological picture

based on the quantum numbers of the individual energy levels
which shows a qualitatively similar structure as the operator
content of the field theory. Using the numerical and analyt-
ical technology presented in this paper it will be possible to
inspect and chart the characteristic spectrum of more complex
quantum critical points, such as O(N) Wilson-Fisher fixed
points, Gross-Neveu-Yukawa type phase transitions in inter-
acting Dirac fermion models [48, 49] or designer Hamiltoni-
ans displaying deconfined criticality [2].

A.M.L. thanks R.C. Brower, J.L. Cardy and A.W. Sand-
vik for discussions. L.-P.H. and M.S. acknowledge support
through the Austrian Science Fund SFB FoQus (F-4018).
S.W. and S.S. are supported by the U.S. NSF under Grant
DMR-1360789. We thank A. Wietek for his help on com-

comparison between numerics and epsilon-expansion: 

At criticality the 4 “topological sectors” scale also as 1/L , but are much closer 
together than the next level above them. 
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Toric code with Ising interactions

Want to study a possible quantum phase transition between Z2 topological 
order and spontaneous global Z2 symmetry breaking. 

Toric code plus additional Ising interactions:

3

FIG. 2. Mapping of the Ising interactions from the Toric Code to the
new model. Solid lines show the original interactions, dotted lines
(in the same color) the mapped interactions. The two sublattices of
the square lattice are denoted by red squares/circles. The resulting
two-body Ising interactions decouple the sublattices, the four-body
interaction couples them.
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Appendix A: Mapping

In this section, we show in detail the exact mapping of the
charge-free sector of the Toric Code model perturbed by near-
est and next-to-nearest neighbour Ising couplings Eq. (??) to
a transverse field Ising model with additional four-spin cou-
plings Eq. (??). We also demonstrate, that only even states un-
der spin-inversion symmetry are present in the mapped model,
and periodic as well as antiperiodic boundary conditions have
to be considered to reconstruct the different topological sec-
tors in the perturbed Toric Code model. A similar mapping
has already been applied to the Toric Code in longitudinal
field [1–3].

FIG. 1. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i , grey squares the dual square lattice
for the variables µx,z

p . T1,2 depict a choice of the two incontractible
loops winding around the torus. See text for further details.

The Hamiltonian of the Toric Code with Ising interactions
is given by

H =� J

X

s

As � J

X

p

Bp

� JI

X

hi,ji

�
x
i �

x
j � JI2

X

hhi,jii

�
x
i �

x
j (A1)

As =
Y

i2s

�
x
i Bp =

Y

i2p

�
z
i

where the �i describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All As and Bp

commute with each other and thus the GS of the Hamiltonian
for JI = JI2 = 0 can be found by setting As = 1 8s and
Bp = 1 8p. On a torus, however, not all of the As and Bp

are linearly independent, as
Q

s As = 1 and
Q

p Bp = 1,
leading to a 4-fould degenerate groundstate manifold. This
groundstate manifold can be distinguished by the expectation
values of the Wilson loop operators t1,2 =

Q
i �

x
i where the

paths wind around the torus along two non-contractible loops
through the centers of the edges of the lattice (e.g. parallel to
T1,2 in Fig. 1).

To perform the mapping to a transverse field Ising model

we first note, that As and t1,2 commute with the Ising interac-
tions, and are thus conserved. So, we consider the charge-free
sector, As = 1 8s, which describes the low-energy physics
even at criticality, and define the new variables

µ
z
p = Bp (A2)

µ
x
p,!(") =

Y

i2cp!(")

�
x
i (A3)

on each site p of the dual lattice (center of plaquette p) [3]. We
choose two incontractible paths T1,2 in x̂(ŷ) direction along
the lattice. The path cp!(") is then a straight path from T2(1)

to the site p in x̂(ŷ)-direction along the dual lattice (cf. Fig. 1).
It is straightforward to show that these variables fulfill the

Pauli-Algebra {µx
p , µ

z
p} = 0, (µx

p)
2 = 1 and that

�
x
i (x̂) = µ

x
p(i),"µ

x
p(i)�ŷ," (A4)

�
x
i (ŷ) = µ

x
p(i),!µ

x
p(i)�x̂,! (A5)

where �
x
i (x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-

direction on the lattice.
We can now map each term in the Toric Code to our new

variables and obtain a transverse field Ising model with second
and third neighbour Ising couplings and an additional four-
spin coupling

HAT =� J

X

i

µ
z
i � 2JI

X

hhi,jii
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x
i µ

x
j � JI2

X

hhhi,jiii
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x
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� 2JI2
X

i

µ
x
i µ

x
i+x̂µ

x
i+ŷµ

x
i+x̂+ŷ (A6)

Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.

The resulting model is invariant under global spin-inversion
I =

Q
p µ

z
p. From Eq. (A2) it immediately follows that

I =
Y

p

Bp = 1 (A7)

where the last equality is always satisfied on a torus and so
only even states in the mapped model are allowed.

Let us finally apply the mapping on the different ground-
state sectors characterized by the eigenvalues of t1,2. Using
Eq. (A4) and Eq. (A5) it follows that

t1 =
L�1Y

p=0

µ
x
(p,j)µ

x
(p+1,j) = µ

x
(0,j)µ

x
(L,j) (A8)

where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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Maps onto a particular  
2+1D quantum Ashkin-Teller (AT) model:  

This model has a two checkerboard lattice  
spatial structure, yielding the two AT-sublattices
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Appendix A: Mapping

In this section, we show in detail the exact mapping of the
charge-free sector of the Toric Code model perturbed by near-
est and next-to-nearest neighbour Ising couplings Eq. (??) to
a transverse field Ising model with additional four-spin cou-
plings Eq. (??). We also demonstrate, that only even states un-
der spin-inversion symmetry are present in the mapped model,
and periodic as well as antiperiodic boundary conditions have
to be considered to reconstruct the different topological sec-
tors in the perturbed Toric Code model. A similar mapping
has already been applied to the Toric Code in longitudinal
field [1–3].

FIG. 1. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i , grey squares the dual square lattice
for the variables µx,z

p . T1,2 depict a choice of the two incontractible
loops winding around the torus. See text for further details.

The Hamiltonian of the Toric Code with Ising interactions
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where the �i describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All As and Bp

commute with each other and thus the GS of the Hamiltonian
for JI = JI2 = 0 can be found by setting As = 1 8s and
Bp = 1 8p. On a torus, however, not all of the As and Bp

are linearly independent, as
Q

s As = 1 and
Q

p Bp = 1,
leading to a 4-fould degenerate groundstate manifold. This
groundstate manifold can be distinguished by the expectation
values of the Wilson loop operators t1,2 =

Q
i �

x
i where the

paths wind around the torus along two non-contractible loops
through the centers of the edges of the lattice (e.g. parallel to
T1,2 in Fig. 1).

To perform the mapping to a transverse field Ising model

we first note, that As and t1,2 commute with the Ising interac-
tions, and are thus conserved. So, we consider the charge-free
sector, As = 1 8s, which describes the low-energy physics
even at criticality, and define the new variables
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on each site p of the dual lattice (center of plaquette p) [3]. We
choose two incontractible paths T1,2 in x̂(ŷ) direction along
the lattice. The path cp!(") is then a straight path from T2(1)

to the site p in x̂(ŷ)-direction along the dual lattice (cf. Fig. 1).
It is straightforward to show that these variables fulfill the
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where �
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i (x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-

direction on the lattice.
We can now map each term in the Toric Code to our new

variables and obtain a transverse field Ising model with second
and third neighbour Ising couplings and an additional four-
spin coupling
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Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.

The resulting model is invariant under global spin-inversion
I =

Q
p µ

z
p. From Eq. (A2) it immediately follows that

I =
Y

p

Bp = 1 (A7)

where the last equality is always satisfied on a torus and so
only even states in the mapped model are allowed.

Let us finally apply the mapping on the different ground-
state sectors characterized by the eigenvalues of t1,2. Using
Eq. (A4) and Eq. (A5) it follows that

t1 =
L�1Y

p=0

µ
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x
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x
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where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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direction on the lattice.
We can now map each term in the Toric Code to our new

variables and obtain a transverse field Ising model with second
and third neighbour Ising couplings and an additional four-
spin coupling

HAT =� J

X

i

µ
z
i � 2JI

X

hhi,jii

µ
x
i µ

x
j � JI2

X

hhhi,jiii

µ
x
i µ

x
j

� 2JI2
X

i

µ
x
i µ

x
i+x̂µ

x
i+ŷµ
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FIG. 2. Mapping of the Ising interactions from the Toric Code to the
new model. Solid lines show the original interactions, dotted lines
(in the same color) the mapped interactions. The two sublattices of
the square lattice are denoted by red squares/circles. The resulting
two-body Ising interactions decouple the sublattices, the four-body
interaction couples them.
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Phase diagram of the Quantum Ashkin-Teller model

Rather poorly studied in the past, so here we perform a new QMC study:
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Phase structure 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Spectroscopy of QCP

ED Torus Spectra in the Quantum Ashkin-Teller model at criticality:

JAT/J = 0 2.5 3 3.8 D/J = 5.38

0

1

2

3

4

5

6

7

8

�
/�

0
⇥
p

N

TFI-AT
�.A(1) even
�.A(1) odd
M.A(1) even
M.A(1) odd

O(2) �.A(1)

Sz = 0 (1⇥)

Sz = 1 (2⇥)

Sz = 2 (2⇥)

Sz = 3 (2⇥)

Sz = 4 (2⇥)

3D XY2 x 3D Ising likely 3D XY !



Phase diagram of the Toric Code + Ising interactions

Translate the Ashkin-Teller results back to the Toric code + Ising:

first order*
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Z2 topological order
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The direct transition 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Torus energy spectrum of 3D XY*

Remove all odd charge sectors in 3D XY but add all 4 BC PP/PA/AP/AA sectors:
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Gross-Neveu-Yukawa

Spinless fermions on a honeycomb lattice:  
massless Dirac fermions ↔ charge density wave  

Gross-Neveu-Yukawa Nf=4 Chiral Ising CFT?

 
M. Schuler, S.Hesselmann, S. Whitsitt, T.C. Lang, S. Wessel & AML, arXiv:1907.05373
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level crossings correspond to two low-energy states having
opposite parities with respect to inversion symmetry. How-
ever, these crossings disappear when one considers the next
largest cluster N = 32 with OBC, so that it probably corre-
sponds to a short-range feature only. We generally think that
using PBC is more appropriate to minimize finite-size effects,
so this will be the case here.

Last, we would like to recall some features of the semi-
metallic (SM) phase that exists in the absence of interactions.
Since there is a vanishing density of states at the Fermi level,
one needs a finite strength of a short-ranged interaction to trig-
ger an instability16,17, so that SM phase must have a finite ex-

tension in the phase diagram.
Regarding possible gap opening mechanism of the SM

phase, Refs 18 and 19 have listed all explicit (i.e. external)
weak-coupling perturbations which can open a gap. In the
spinless case considered here, the three particle-hole related
gaps are: i) the Néel-like charge density wave, which breaks
the A-B sublattice symmetry, ii) the Kekulé distortion pattern,
which breaks translation symmetry by adopting a tripling of
the unit-cell of modulated bond-strengths (this order parame-
ter has a real and an imaginary part, thus corresponds to two
masses), and iii) the integer quantum Hall mass20, induced
by breaking the time-reversal invariance and parity symmetry
upon adding complex Peierls phases on next-nearest neighbor
hoppings, without enlarging the size of the unit-cell. In ad-
dition to the particle-hole gaps, there is also the possibility to
open gaps by the addition of superconducting order parame-
ters18,21,22, we will however not address these instabilities in
this work.

The model Hamiltonian (1) considered here features all the
usual symmetries. If the semi-metallic phase is gapped out
by interactions, then the gap opening has to happen through
the interactions by spontaneously breaking some of the sym-
metries. The case i) quoted before is a well known instabil-
ity, since the Néel CDW state is an obvious strong-coupling
ground state at large V1/t. The other instabilities ii) and iii)
currently lack a strong coupling picture, and need to be con-
firmed by numerical simulations. We note however that all
three particle-hole instabilities have been reported in mean-
field studies.4–6

C. Overview of the phase diagram

We start by drawing the global phase diagram that summa-
rizes our main findings, see Fig. 3. Its main features are the
existence of several types of charge or bond ordering for inter-
mediate to large V1 and/or V2 interactions: Néel CDW, charge
modulation (CM), zigzag (ZZ) phase, Néel domain wall crys-
tal (NDWC), and plaquette/Kekulé phase (P-K) that we will
clarify later. The large orange region (ST*) in the upper right
part of the phase diagram features a degeneracy at the semi-
classical level, and it is presently unclear whether and how an
order-by-disorder mechanism will lift the degeneracy. While
some of these phases (CM, P-K, CDW) had been predicted us-
ing mean-field studies6 and confirmed numerically in some re-
gions10,11, the others (including NDWC and ST* phase for re-

pulsive interactions and the ZZ phase for attractive V1) had not
been advocated before. Note already that the plaquette/Kekulé
(P-K) phase only exists in some bounded region for interme-
diate (V1, V2) values, and does not extend to strong coupling.

There is also a large region of phase separation, mostly for
strong attractive interactions, in agreement with the results of
Ref. 23 for V2 = 0. Possibly superconductivity is present in
parts of the attractive region of the phase diagram, but we did
not focus on this instability here.

Last but not least, we do not have any convincing evidence
for the stability of the QAH phase, as found in similar recent
numerical studies10,11 but in contradiction with another nu-
merical study using open boundary conditions and entangled-
plaquette ansatz.12
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FIG. 3. (Color online) Phase diagram in the (V1/t, V2/t) parameter
space obtained from several exact diagonalization techniques (see
text). Dashed lines represent the classical transition lines, see Fig. 4.
The semi-metal, which is the ground-state for non-interacting spin-
less fermions, has a finite extension in the phase diagram because of
its vanishing density of states at the Fermi level. We will argue in the
remainder of this article that several other phases can be stabilised for
intermediate and/or large interactions: Néel CDW, plaquette/Kekulé
(P-K), Néel domain wall crystal (NDWC), zigzag (ZZ) phase, and
charge modulation (CM). The region (ST*) is degenerate at the semi-
classical level, and it is presently unclear whether and how an order-
by-disorder mechanism will lift the degeneracy. Note also the large
region of phase separation mostly in the attractive quadrant. Filled
symbols correspond to numerical evidence (using level spectroscopy
or measurements of correlations, see Sec. IV) obtained mostly on a
N = 24 cluster which contains the most important points in its Bril-
louin zone and features the full lattice point group symmetry of the
honeycomb lattice. Star symbols denote likely first order transitions,
witnessed by level crossings on the same cluster. Our numerical re-
sults do not support any region of topological QAH phase.

We will now turn to the presentation of various numerical
data and considerations that we have used to come up with
this global phase diagram.
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Our paper is organized as follows. In Sec. II we introduce
the GNY field theory, as well as the related Gross-Neveu (GN)
field theory, which is formulated purely in terms of interacting
fermions and introduce the two distinct renormalization group
fixed points under consideration in this work. We present the
fermion lattice models used to compute the Chiral Ising crit-
ical torus spectrum, and establish the GNY field theory as a
low-energy effective description of the lattice models.

In Sec. III we provide a brief overview of our results. We
discuss the different structures of the torus spectra of the
free Dirac conformal field theory (CFT) and GNY CFT, the
crossover behaviour in finite volume and their impact on the
renormalization of the Fermi velocity. In Sec. IV we give a
more detailed analysis of the critical torus energy spectrum
obtained from numerics. We show energy gaps from both ED
and QMC simulations, and give details on the extrapolation to
the thermodynamic limit. In Sec. V we present the ✏ expan-
sion of the GNY field theory, and compare the results to the
numerical spectra. Finally, in Sec. VI we conclude our results
by comparing the different torus geometries among each other
and discuss possible future perspectives.

II. FIELD THEORIES AND MODEL HAMILTONIANS

This section provides a concise introduction of the GNY
field theory, the important infrared fixed points along with
symmetry aspects that are relevant for the analysis of the torus
spectrum. We also introduce the microscopic quantum many-
body lattice models that exhibit fermionic quantum critical
points, and which we examine by our numerical methods.

A. Quantum Field Theories

The fermionic quantum field theories (QFTs) that we ex-
plore in this work can be described by the GNY theory of
fermionic fields coupled to a Z2 order parameter, i.e., a real,
one-component scalar field [2, 8, 21] in D = 3 (space-time)
dimensions. Depending on the value of a tuning parame-
ter, the GNY theory describes a SM of non-interacting Dirac
fermions, a symmetry broken phase with finite order param-
eter, and, inbetween those, a critical point belonging to the
Chiral Ising universality class [5, 6]. The most general form
of the imaginary-time GNY Lagrangian is

LGNY = � j �
�@ + gY �

�
 j +

1

2
�
�
s � @2

�
� +

�

4!
�4 , (1)

AML: I actually like the s better than the m2 notation, I
think the ”mass” aspect of m2 is not so helpful in the GNY
context. SeW: I agree, and additionally we used s in
our previous papers, so I think it would be better to stick
with that. where  j is an nD-component Dirac spinor with
j = 1, ..., Nf flavors, so the total number of fermionic degrees
of freedom is N = nDNf . The real scalar field is denoted by
�, and gY is the Yukawa coupling strength between the spinor
and scalar fields. We use the standard notation �@ = �µ@µ,
µ 2 {0, . . . D � 1} and =  �0, where the gamma matrices

satisfy the Clifford algebra {�µ, �⌫} = 2�µ⌫ , and we have set
the speed of light to unity. This theory has an SU(Nf ) sym-
metry corresponding to unitary rotations between the flavors.
In D = 3 a Dirac spinor has a minimum of nD = 2 com-
ponents; however, in applications to condensed matter sys-
tems, the number of two-component Dirac fermions in a bulk
lattice system is always doubled due to fermion doubling ar-
guments [1, 22], so the total number of fermionic degrees of
freedom N is always a multiple of four.

In D = 3, there is a critical value of the tuning param-
eter, s = sc, such that for s < sc the scalar order parame-
ter acquires an expectation value, h�i 6= 0. A finite expecta-
tion value h�i spontaneously breaks the (Z2) parity symme-
try of the theory, which is given by taking (x0, x1, x2) !
(x0, �x1, x2) together with

 ! �1 ,  ! � �1 , � ! �� . (2)

The nonzero expectation value of � acts as a Dirac mass in
Eq. (1), resulting in a massive spectrum of fermions above
a two-fold degenerate ground state. In contrast, for s > sc,
the parameter s flows to positive infinity while gY and � flow
to zero. In this limit, we may ignore the gapped bosonic
fields, and at long distances the theory describes a SM of non-
interacting, massless Dirac fermions with the Euclidean La-
grangian

LD = � j
�@ j . (3)

We call this fixed point the Dirac CFT, and its properties are
easily obtained due to being exactly solvable.

Directly at the QCP, s = sc, the interaction couplings gY
and � flow to non-zero values of an interacting fixed point,
determined by the chiral Ising universality class. We hence
denote the critical theory of this emerging interacting fixed
point the chiral Ising CFT. This QCP is non-perturbative di-
rectly in D = 3, but there exists a perturbative expansion in
✏ = 4 � D, where � ⇠ g2Y ⇠ O(✏), and the universal proper-
ties of the QCP may be obtained after extrapolating to ✏ = 1.
This will be our primary analytic tool for studying the finite-
size torus spectrum as detailed in Sec. V. SeW: I have altered
the discussion above to address AML’s comments.

One may alternatively describe the above QCP using
a purely fermionic field theory, the Gross-Neveu (GN)
model [23], whose imaginary-time Lagrangian is

LGN = � j
�@ j � g

2

⇣
 

j
 j

⌘2
, (4)

with a self-interaction of strength g > 0. For D = 3, the cou-
pling g is renormalization group (RG) irrelevant, and a weak-
coupling analysis always results in a stable massless Dirac SM
phase with h  i = 0. However, there is ample evidence for a
non-perturbative UV fixed point at some value g = gc, where
for g > gc the system flows to strong coupling. At strong cou-
pling, the system dynamically generates a mass by acquiring
an expectation value h  i 6= 0, spontaneously breaking the
(Z2) parity transformation of Eq. (2), which will be examined
in more detail in Sec. II C. By the principle of universality, this
fixed point should also be in the chiral Ising universality class,
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Experimental Prospects ?

In large, bulk materials, the many body energy spectrum is mostly extremely 
dense.  

In mesoscopic systems the finite energy spacing starts playing a role 

Our results show that the precise relative position of energy levels at the edge 
of the spectrum caries valuable information.  

Can one access some of this information using experimental probes ?  



Experimental Prospects ?

Some of the energy levels can be seen  
in some inelastic scattering experiments 
on mesoscopic samples. 

in 1D, ring magnetic molecules provide a 
nice example of this approach.  
 

New STM experiments on interacting 
1D metals reveal spin-charge separation  
based on real-space LDOS  
measurements.
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issues9,27,28,36,37. The spin Hamiltonian of Cr8 contains a dominating
nearest-neighbour Heisenberg antiferromagnetic exchange and
small axial anisotropic terms:

H = J

8X

i=1

s(i) ·s(i+1)+D

8X

i=1

s
2
z
(i) (1)

where s(9) ⌘ s(1), J = 1.46meV, D = �0.038meV and the
anisotropy axis z is perpendicular to the ring plane35,38. The ground
state of equation (1) is a non-magnetic singlet (total spin S = 0),
and the low-lying excited levels are arranged into rotational bands
(Fig. 1). The lowest one (called the L-band) contains the ground
state and approximately follows the Landé rule E(S)=2JS(S+1)/N
(ref. 39). The second set of levels belongs to the so-called E-bands,
which are also parabolic with respect to S but shifted to higher
energies. Owing to their internal structure, L-band states can be
excited by neutrons practically only to L- or E-band states40. Hence,
at low temperature, where only the S= 0 ground state is populated,
three peaks are expected and observed in INS spectra35 (transitions
marked by arrows in Fig. 1). Anisotropy produces small splittings
of the otherwise degenerate S-multiplets and a tiny second-order
mixing of different multiplets. For instance, the L-band S=1 triplet
is split into an |S = 1,M = 0i singlet and an |S = 1,M = ±1i
doublet that are resolved by high-resolution INS measurements
(inset of Fig. 1b). Splittings of the E-band triplets are smaller and
not experimentally resolved.

INS and dynamical correlation functions
The INS spectra in Fig. 1b have been obtained on a polycrystalline
sample and are integrated over a wide range of momentum transfer
Q; hence, they contain no direct information on the spatial structure
of wavefunctions. This is usually indirectly inferred by fitting the
spectra to a specific model Hamiltonian such as equation (1) or by
analysing the dependence of peak intensities on the modulus of the
momentum transferQ. In powder INSmeasurements, however, the
resulting angular-averaged cross-section does not in general allow
one to extract dynamical spin correlations directly. Indeed, in the
corresponding cross-section formula (see refs 34,41) all anisotropic
correlation coefficients multiply the same Q-dependent function
and therefore cannot be extracted separately. Even in the isotropic
case, the fact that the powder cross-section depends only on scalar
distances between magnetic ions and not on their vector positions
in space poses severe limitations. For instance, correlations in
the simple but important case of a heterometallic ring cannot be
determined if only powder data are available, because this case
cannot be distinguished from that of a homometallic ring with
averaged correlations.

If single-crystal samples are used, only limited and partially
integrated information on the Q-dependence of the scatter-
ing function S(Q,!) (where h̄! is the transferred energy, see
ref. 42 and equation (2)) can be obtained by traditional time-
of-flight neutron spectrometers, which carry unitary detectors
fitted on Debye–Scherrer rings. The implementation of large ar-
rays of position-sensitive detectors in cold-neutron time-of-flight
spectrometers43,44, together with the advances in software45, has
recently opened unprecedented possibilities in single-crystal INS
experiments on MNMs, allowing the determination of the four-
dimensional scattering function S(Q,!) in a vast portion of the
reciprocal space. On the one hand, this provides amuchmore selec-
tive characterization of the MNMwhen different candidate models
can be discriminated only by the vectorialQ-dependence of S(Q,!)
(ref. 41). On the other hand, the amount of available information is
so large that the full pattern of real-space dynamical two-spin corre-
lations can be determined, without using anymodelHamiltonian.

By exploiting the new position-sensitive-detectors set-up of the
cold-neutron time-of-flight spectrometer IN5 (ref. 43), we have
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Figure 1 |Magnetic energy spectrum of Cr8 and zero-temperature INS
transitions. a, Low-lying energy multiplets as a function of their total spin
for the isotropic exchange Hamiltonian of Cr8 (equation (1) with D = 0).
The arrows indicate the three transitions seen by INS at zero temperature.
All other transitions have negligible cross-section. The blue and red
symbols indicate L- and E-band states, respectively; grey symbols indicate
states not belonging to these bands. The inset shows the core of Cr8

(C80Cr8F8D144O32; green, Cr; yellow, F; red, O; dark grey, C; D omitted).
b, Measured low-T INS spectra for a powder Cr8 sample, with an incident
neutron wavelength ⌦= 3.1 Å. The labels indicate the three peaks
corresponding to the transitions reported in a. The p = 1 transition is
partially hidden by the elastic signal. The inset reports higher-resolution
measurements with ⌦= 5 Å showing the p = 1 transition split by magnetic
anisotropy.

measured the detailed Q-dependence of the scattering function
S(Q,!) in a vast portion of reciprocal space. Figure 2 and Fig. 3a–c
show examples of the Q-dependence of S(Q,!) for the three
low-temperature INS transitions. As we first address the effects of
isotropic exchange, data for the p= 1 transition are integrated over
the energy range of the anisotropic splitting. Anisotropy will be
addressed below. Figure 3 shows that the variation of S(Q,!) in
the Qx �Qy plane is characterized by several maxima and minima
whose shape and positions depend on the specific transitions and
reflect the structure of the involved wavefunctions. More specifi-
cally, for aMNMwith uniaxial anisotropy andT !0 (ref. 42)
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FIG. 4. Dispersion of confined quasiparticles in MoS2 MTBs. a Color plot of the dI/dV signal along the MTB displayed
in Fig. 1e as a function of energy and position (Ustab = 0.5 V, Istab = 0.1 nA). b FT of the experimental data, revealing
the dispersion of the confined quasiparticles. c Simulated LDOS using our TLL model (vc = 0.45 nm · eV, vs = 0.27 nm · eV,
Kc = 0.5). Same color scale as used in a. d FT of the simulated LDOS in c with the same color scale as in b.

out that the Luttinger parameter Kc in the range of 0.20
to 0.21 obtained by Ma et al. [19] is much lower than
our estimate Kc = 0.5±0.1. One possible reason for this
discrepancy is that Ma et al. deduce Kc from a power law
fit to the density of states near EF by averaging over a
dense network of 1D subsystems. This analysis does not
take into account the finite wire length between crossing
points (of the order of 10 nm). The finite wire length
implies an extra suppression of the density of states both
due to finite size gaps (see our Fig. 3g) and due to an
extra suppression of the density of states close to defects
and walls predicted by Luttinger liquid theory [36]. This
extra suppression of the density of states may lead to an
estimate of Kc which is systematically too small.

In conclusion, STS spectral maps along MTBs and
their FTs show clear evidence for spin-charge separation,
characteristic for a quantum confined TLL. We envision
that higher resolution data could be obtained by further
decoupling the 1D metal from its environment and by
lowering the temperature, enabling a quantitative com-
parison to TLL theory. Moreover, chemical gating and
defect engineering of the MTBs might enable one to mod-
ify the correlation strength in the TLL or even create new
exotic phases.
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Appendix A: Experimental methods and

high-resolution images of MoS2

1. Sample preparation

The synthesis of MoS2 on the substrate graphene on
Ir(111) is conducted in a two-step process [33]: During
the first step, Mo is evaporated from a rod with a rate of
0.125 monolayers/min on the graphene surface at room
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Experimental Prospects ?

In 2D tori are perhaps not readily available  
in condensed matter systems, but we plan 
to extend our analysis to systems with open 
boundaries, but the analysis might become 
involved. 

In synthetic (AMO) systems tori might 
become accessible for some Hamiltonians.

2

FIG. 2. Single atom fluorescence in 3d arrays. (a-f) Maximum in-
tensity projection reconstruction of the average fluorescence of single
atoms stochastically loaded into exemplary arrays of traps. The x,y,z
scan range of the fluorescence is indicated and is the same for all the
3d reconstructions.

(ETL1) [19] in the imaging path allows us to acquire series
of stack images along the optical axis ẑ with which we recon-
struct the full 3d intensity distribution. The imaging system
covers a z-scan range of 200µm.

Figure 1 (b-d) shows some examples of patterns suitable
for experiments with single atoms. The images are recon-
structed using a maximum intensity projection method [20]
from 200 z-images obtained with the diagnostics CCD cam-
era. With ⇠ 3.5 mW of power per trap we reach depths of
U0/kB ' 1mK, and radial (longitudinal) trapping frequen-
cies of around 100 kHz (20 kHz). We produce highly uni-
form microtrap potentials (with peak intensities differing by
less than 5% rms) via a closed-loop optimization [16]. 87Rb
atoms are then loaded in the traps from a magneto-optical trap
(MOT), with a final temperature of 25µK. We detect the occu-
pancy of each trap by collecting the fluorescence of the atoms
at 780 nm with an EMCCD camera for 50 ms. A second tun-
able lens (ETL2) in the imaging path is used to focus the flu-
orescence of different atom planes.

In Fig. 2 we show the fluorescence of single atoms trapped
in various complex 3d structures, some of which are relevant
to the study of non-trivial properties of Chern insulators [21–
23]. Each example is reconstructed from a series of 100 z-
stack images covering an axial range of ⇠ 120µm. With no
further action, these arrays are randomly loaded with a filling
fraction of ⇠ 0.5; we thus average the fluorescence signal over

300 frames to reveal the geometry of the structures.
For deterministic atom loading, we extend our 2d atom-

by-atom assembler [12] to 3d geometries. For that, we su-
perimpose a second 850-nm laser beam (with 1/e2 radius
⇠ 1.3 µm) on the trapping beam, which can be steered in the
x-y plane using a 2d acousto-optical deflector (AOD) and in
z by changing the focal length of a third tunable lens (ETL3).
Combined with a real-time control system, this moving tweez-
ers (MT) can perform single atom transport with fidelities ex-
ceeding 0.993 [12], and produce fully loaded arrays by us-
ing independent and sequential rearrangement of the atoms
for each of the np planes in the 3d structures.

To explore the feasibility of plane-by-plane atom assembly,
we first determine the minimal separation between layers so
that each target plane can be reordered without affecting the
others. To quantify this, we perform the following experiment
in a 2d array containing 46 traps. We randomly load the array
with single atoms and demand the atom assembler to remove
all the atoms. We average over ⇠ 50 realizations and then
repeat the experiment for different axial separations between
the MT position and the trap plane. The result is shown in
Fig. 3a, where we see that for separations beyond ⇠ 17µm
the effect of the moving tweezers on the atoms is negligible.
This distance can be further reduced to ⇠ 14µm by operating
the moving tweezers with less power, without any degradation
in the performance of the sorting process. In a complementary
experiment, where we fully assembled small arrays, we also
checked that the assembling efficiency is not affected by slight
changes (below ⇠ 3µm) in the exact axial position of the MT.

We now demonstrate full loading of arbitrary 3d lattices us-
ing plane-by-plane assembly. We start by creating a 3d trap
array which can be decomposed in several planes normal to
z. In each plane we generate approximately twice the num-
ber of traps we need to load, such that we easily load enough
atoms to assemble the target structure. The sequence to create
fully loaded patterns (see Fig. 3b) starts by loading the MOT
and monitoring the atoms entering and leaving the traps by
sequentially taking a picture for each plane. We trigger the
assembler as soon as there are, in each plane, enough atoms
to fully assemble it. We then freeze the loading by dispersing
the MOT cloud, and record the initial positions of the atoms
by another series of z-stack images. The analysis of the im-
ages reveals which traps are filled with single atoms. We use
this information to compute, in about 1 ms, the moves needed
to create the fully loaded target array, and perform plane-by-
plane assembling, changing the z-position of the MT. Finally,
we detect the final 3d configuration with another series of z-
stack images.

Figure 3(c-h) shows a gallery of fully-loaded 3d atomic ar-
rays, arbitrarily arranged in space. We can create fully loaded
3d architectures with up to 72 atoms distributed in several lay-
ers with different degrees of complexity. The selected struc-
tures include simple cubic lattices (d), bilayers with a square
or graphene-like [24] arrangements (c,e,g), lattices with in-
herent geometrical frustration such as pyrochlore (f) [25], or
lattices with cylindrical symmetry (h), suitable e.g. to study
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Conclusion / Outlook

We have shown that the universal torus energy spectrum of the CFT 
describing quantum critical points is accessible numerically. 

The torus energy spectrum contains valuable information on the “operator  
content”. It is e.g. able to discriminate the Ising from the Ising* universality class,  
and 2 x Ising from 3D XY 

We have results for O(2)/O(3) Wilson-Fisher fixed points and some preliminary 
results for Gross-Neveu-Yukawa critical points. 

Results from CFT side ? 

Spectra for QED3, Fermi surface + U(1) gauge field ?
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